973 resultados para Bose Einstein condensate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the actual state of affairs and future perspectives in the study of a quantum system of a collection of positronium (Ps) atoms. The interaction of a Ps atom with other atoms and molecules and specially with another Ps atom is described in some detail as Ps-Ps interaction should play a crucial role in the dynamics of an assembly of Ps atoms. Using a simple model-exchange potential, we could describe the available experimental results of Ps scattering reasonably well. The present scenario of the observation of Ps2 molecule, Ps Bose-Einstein condensate (BEC) and the annihilation laser from a Ps BEC is presented. Possibilities of a Ps BEC formation via laser cooling of Ps atoms and via Ps formation in cavities are considered and difficulties with each procedure discussed (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of the localized states of a two-component Bose-Einstein condensate confined in a nonlinear periodic potential (nonlinear optical lattice) are investigated. We discuss the existence of different types of solitons and study their stability by means of analytical and numerical approaches. The symmetry properties of the localized states with respect to nonlinear optical lattices are also investigated. We show that nonlinear optical lattices allow the existence of bright soliton modes with equal symmetry in both components and bright localized modes of mixed symmetry type, as well as dark-bright bound states and bright modes on periodic backgrounds. In spite of the quasi-one-dimensional nature of the problem, the fundamental symmetric localized modes undergo a delocalizing transition when the strength of the nonlinear optical lattice is varied. This transition is associated with the existence of an unstable solution, which exhibits a shrinking (decaying) behavior for slightly overcritical (undercritical) variations in the number of atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the variational approximation and numerical simulations, we study one-dimensional gap solitons in a binary Bose-Einstein condensate trapped in an optical-lattice potential. We consider the case of interspecies repulsion, while the intraspecies interaction may be either repulsive or attractive. Several types of gap solitons are found: symmetric or asymmetric; unsplit or split, if centers of the components coincide or separate; intragap (with both chemical potentials falling into a single band gap) or intergap, otherwise. In the case of the intraspecies attraction, a smooth transition takes place between solitons in the semi-infinite gap, those in the first finite band gap, and semigap solitons (with one component in a band gap and the other in the semi-infinite gap).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In three-dimensional trapped Bose-Einstein condensate (BEC), described by the time-dependent Gross-Pitaevskii-Ginzburg equation, we study the effect of initial conditions on stability using a Gaussian variational approach and exact numerical simulations. We also discuss the validity of the criterion for stability suggested by Vakhitov and Kolokolov. The maximum initial chirp (initial focusing defocusing of cloud) that can lead a stable condensate to collapse even before the number of atoms reaches its critical limit is obtained for several specific cases. When we consider two- and three-body nonlinear terms, with negative cubic and positive quintic terms, we have the conditions for the existence of two phases in the condensate. In this case, the magnitude of the oscillations between the two phases are studied considering sufficient large initial chirps. The occurrence of collapse in a BEC with repulsive two-body interaction is also shown to be possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bose-Einstein condensate of several types of trapped bosons at ultralow temperature was described using the coupled time dependent Gross-Pitaevskii equation. Both the stationary and time evolution problems were analyzed using this approach. The ground state stationary wave functions were found to be sharply peaked near the origin for attractive interatomic interaction for larger nonlinearity while for a repulsive interatomic interaction the wave function extends over a larger region of space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical study of the time-dependent Gross-Pitaevskii equation for an axially symmetric trap to obtain insight into the free expansion of vortex states of BEC is presented. As such, the ratio of vortex-core radius to radia rms radius xc/xrms(<1) is found to play an interesting role in the free expansion of condensed vortex states. the larger this ratio, the more prominent is the vortex core and the easier is the possibility of experimental detection of vortex states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was conducted on the dynamics of 2D and 3D Bose-Einstein condensates in the case when the scattering length in the Gross-Pitaevskii (GP) equation which contains constant (dc) and time-variable (ac) parts. Using the variational approximation (VA), simulating the GP equation directly, and applying the averaging procedure to the GP equation without the use of the VA, it was demonstrated that the ac component of the nonlinearity makes it possible to maintain the condensate in a stable self-confined state without external traps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the explicit numerical solution of the axially symmetric Gross-Pitaevskii equation we study the dynamics of interaction among vortex solitons in a rotating matter-wave bright soliton train in a radially trapped and axially free Bose-Einstein condensate to understand certain features of the experiment by Strecker et al (2002 Nature 417 150). In a soliton train, solitons of opposite phase (phase δ = π) repel and stay apart without changing shape; solitons with δ = 0 attract, interact and coalesce, but eventually come out; solitons with a general δ usually repel but interact inelastically by exchanging matter. We study this and suggest future experiments with vortex solitons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We resolve the real-time dynamics of a purely dissipative s=1/2 quantum spin or, equivalently, hard-core boson model on a hypercubic d-dimensional lattice. The considered quantum dissipative process drives the system to a totally symmetric macroscopic superposition in each of the S3 sectors. Different characteristic time scales are identified for the dynamics and we determine their finite-size scaling. We introduce the concept of cumulative entanglement distribution to quantify multiparticle entanglement and show that the considered protocol serves as an efficient method to prepare a macroscopically entangled Bose-Einstein condensate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, we present the generation and studies of a 87Rb Bose-Einstein condensate (BEC) perturbed by an oscillatory excitation. The atoms are trapped in a harmonic magnetic trap where, after an evaporative cooling process, we produce the BEC. In order to study the effect caused by oscillatory excitations, a quadrupole magnetic field time oscillatory is superimposed to the trapping potential. Through this perturbation, collective modes were observed. The dipole mode is excited even for low excitation amplitudes. However, a minimum excitation energy is needed to excite the condensate quadrupole mode. Observing the excited cloud in TOF expansion, we note that for excitation amplitude in which the quadrupole mode is excited, the cloud expands without invert its aspect ratio. By looking these clouds, after long time-of-flight, it was possible to see vortices and, sometimes, a turbulent state in the condensed cloud. We calculated the momentum distribution of the perturbed BECs and a power law behavior, like the law to Kolmogorov turbulence, was observed. Furthermore, we show that using the method that we have developed to calculate the momentum distribution, the distribution curve (including the power law exponent) exhibits a dependence on the quadrupole mode oscillation of the cloud. The randomness distribution of peaks and depletions in density distribution image of an expanded turbulent BEC, remind us to the intensity profile of a speckle light beam. The analogy between matter-wave speckle and light speckle is justified by showing the similarities in the spatial propagation (or time expansion) of the waves. In addition, the second order correlation function is evaluated and the same dependence with distance was observed for the both waves. This creates the possibility to understand the properties of quantum matter in a disordered state. The propagation of a three-dimensional speckle field (as the matter-wave speckle described here) creates an opportunity to investigate the speckle phenomenon existing in dimensions higher than 2D (the case of light speckle).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the entanglement characteristics of two general bimodal Bose-Einstein condensates-a pair of tunnel-coupled Bose-Einstein condensates and the atom-molecule Bose-Einstein condensate. We argue that the entanglement is only physically meaningful if the system is viewed as a bipartite system, where the subsystems are the two modes. The indistinguishibility of the particles in the condensate means that the atomic constituents are physically inaccessible and, thus, the degree of entanglement between individual particles, unlike the entanglement between the modes, is not experimentally relevant so long as the particles remain in the condensed state. We calculate the entanglement between the two modes for the exact ground state of the two bimodal condensates and consider the dynamics of the entanglement in the tunnel-coupled case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a model for a two-mode atomic-molecular Bose-Einstein condensate. Starting with a classical analysis we determine the phase space fixed points of the system. It is found that bifurcations of the fixed points naturally separate the coupling parameter space into four regions. The different regions give rise to qualitatively different dynamics. We then show that this classification holds true for the quantum dynamics.