988 resultados para Blast-furnace


Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este trabajo se ha estudiado la evolución de la microestructura, propiedades de durabilidad y resistencias mecánicas de morteros preparados con cementos comerciales, que contienen ceniza volante (entre un 21% y un 35%) y escoria de alto horno (entre un 66% y un 80%), expuestos a tres ambientes, un ambiente óptimo de laboratorio, y dos ambientes representativos del clima Atlántico y Mediterráneo respectivamente. Como referencia de comportamiento, también se ensayaron morteros de cemento Portland. La microestructura se caracterizó mediante porosimetría de intrusión de mercurio. En lo referente a la durabilidad, se estudiaron los coeficientes de absorción capilar y de migración de cloruros en estado no estacionario. También se determinó la resistencia a compresión de los morteros. Los ensayos se realizaron a 7, 28 y 90 días. La principal conclusión alcanzada es que los cementos con cenizas y escorias expuestos a condiciones ambientales representativas de los climas Atlántico y Mediterráneo, pueden desarrollar unas propiedades en servicio adecuadas al cabo de tres meses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Today, the use of micropiles for different applications has become very common. In Spain, the cement grouts for micropiles are prepared using ordinary Portland cement and w:c ratio 0.5, although the micropiles standards do not restrict the cement type to use, provided that it reaches a certain compressive strength. In this study, the influence of using slag cement on the microstructure and durability related properties of cement grouts for micropiles have been studied until 90 hardening days, compared to an ordinary Portland cement. Finally, slag cement grouts showed good service properties, better than ordinary Portland cement ones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the microstructure of mortars made with an ordinary Portland cement and slag cement has been studied. These mortars were exposed to four different constant temperature and relative humidity environments during a 180-day period. The microstructure has been studied using impedance spectroscopy, and mercury intrusion porosimetry as a contrast technique. The impedance spectroscopy parameters make it possible to analyze the evolution of the solid fraction formation for the studied mortars and their results are confirmed with those obtained using mercury intrusion porosimetry. The development of the pore network of mortars is affected by the environment. However, slag cement mortars are more influenced by temperature while the relative humidity has a greater influence on the OPC mortars. The results show that slag cement mortars hardened under non-optimal environments have a more refined microstructure than OPC mortars for the studied environmental conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of a gas flow field on the size of raceway has been studied experimentally using a two-dimensional (2-D) cold model. It is observed that as the blast velocity from the tuyere increases, raceway size increases, and when the blast velocity is decreased from its highest value, raceway size does not change much until the velocity reaches a critical velocity. Below the critical velocity, raceway size decreases with decreasing velocity but is always larger than that for the same velocity when the velocity increased. This phenomenon is called raceway hysteresis. Raceway hysteresis has been studied in the presence of different gas flow rates and different particle densities. Raceway hysteresis has been observed in all the experiments. The effect of liquid flow, with various superficial velocities, on raceway hysteresis has also been studied. A study of raceway size hysteresis shows that interparticle and particle-wall friction have a very large effect on raceway size. A hypothesis has been proposed to describe the hysteresis phenomenon in the packed beds. The relevance of hysteresis to blast furnace raceways has been discussed. Existing literature correlations for raceway size ignore the frictional effects. Therefore, their applicability to the ironmaking blast furnace is questionable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental studies on phase equilibria in the multi-component system PbO-ZnO-CaO-SiO2-FeO-Fe2O3 in air have been conducted to characterize the phase relations of a complex slag system used in the oxidation smelting of lead and in typical lead blast furnace sinters. The liquidus in two pseudoternary sections ZnO-Fe2O3-(PbO + CaO + SiO2) with the CaO/SiO2 weight ratio of 0.1 and the PbO/(CaO + SiO2) weight ratio of 6.2, and with CaO/SiO2 weight ratio of 0.6 and the PbO/(CaO + SiO2) weight ratio of 4.3, have been constructed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When a gas is introduced at high velocity through a nozzle into a packed bed, it creates a raceway in the packed bed. It has been found that the raceway size is larger when it is formed by decreasing the gas velocity from its highest value than when it is formed by increasing the gas velocity. This phenomenon is known as raceway hysteresis. A hypothesis has been oroposed to explain the hysteresis phenomenon based on a force-balance approach which includes frictional, bed-weight, and pressure forces. According to this hypothesis, the frictional force acts in different directions when the raceway is expanding and contracting. In this article, the entire packed bed has been divided into radial and Cartesian co-ordinate systems, and the forces acting on the raceway have been solved analytically for a simplified one-dimensional case. Based on the force-balance approach, a general equation has been obtained to predict the diameter of the raceway for increasing And decreasing velocities. A reasonable agreement has been found between the theoretical predictions and experimental observations. The model has also been compared with published experimental and plant data. The hysteresis mechanism in the packed beds can be described reasonably by taking into consideration the direction of frictional forces for the increasing- and decreasin-velocity cases. The effects of the particleshape factor and void fraction on the raceway hysteresis are examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quaternary ammonium exchanged laponites (Quat-laponites) show selectivity in the adsorption of phenols and chlorinated phenols. Strong adsorbate-adsorbent interactions are indicated by adsorption isotherms. Adsorption of phenols and chlorinated phenols by Quat-smectites is greater than that by the Bi Quat-Smectites prepared in this study. It is thought that the quaternary ammonium exchanged smectite components of the Bi Quat-smectites interact with each other (adsorbent-adsorbent interactions) reducing the number of sites available for adsorbate-adsorbent interactions. Solidification/stabilisation studies of 2-chlorophenol show that a blend of ground granulated blast furnace slag and ordinary Portland cement attenuates 2-chlorophenol more effectively than ordinary Portland cement alone. Tetramethyl ammonium- (TMA-) and tetramethyl phosphonium- (TMP-) montmorillonites were exposed to solutions of phenol or chlorinated phenols. TMP- montmorillonite was the better adsorbent and preferentially adsorbed 4-chlorophenol over phenol. Hydration of the interlayer cations occurs to a greater extent in the TMA-montmorillonite than the TMP-montmorillonite restricting interlayer adsorption. Contrary to that observed for phenols and chlorinated phenols, the Quat-smectites were ineffective as adsorbents for triphenyltin hydroxide and bis(tributyltin) oxide at room temperature. Under microwave conditions, only bis(tributyltin) oxide was adsorbed by the quaternary ammonium exchanged smectites. Bis(tributyltin) oxide was adsorbed from ethanol on the surface of the smectite clays at room temperature and under microwave conditions. The adsorbate-adsorbent interactions were weak. Adsorption is accompanied by conversion of bis(tributyltin) oxide to a different tin(IV) species and the release of sodium cations from the montmorillonite interlayer region. Attempts to introduce conditions suitable for charge transfer interactions between synthesised quaternary ammonium compounds and 2,4,6-trichlorophenol are documented. Transition metal complex exchanged clays adsorb 2,4,6-trichlorophenol and phenol. Strong adsorbate-adsorbent interactions (Type I isotherms) occur when the adsorbate is 2,4,6-trichlorophenol and when the adsorbent is [Fe(bipy)3]2+ exchanged montmorillonite or [Co(bipy)3]3+ exchanged montmorillonite. The 2,2'-bipyridyl ligands of the adsorbents are electron rich and the 2,4,6-trichlorophenol is electron deficient. This may have enhanced adsorbate-adsorbent interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metakaolin (MK), a calcined clay, was included as a partial cement replacement material, at up to 20% by weight of binder, in cement pastes and concrete, and its influence on the resistance to chloride ingress investigated. Reductions in effective chloride diffusion coefficients through hardened cement paste were obtained for binary blends and by combining OPC, MK and a second cement replacement material of pulverised fuel ash or ground granulated blast furnace slag. Steady state oxygen diffusion measurements through hardened cement pastes measured using an electrochemical cell showed that the interaction between charged species and the pore surfaces is a major factor in determining chloride diffusion rate. Rheology of the binder, particularly at high MK replacement levels, was found to have a dramatic influence on the diffusion performance of cement pastes. It was concluded that plasticising admixtures are essential for adequate dispersion of MK in cement pastes. Chloride concentration profile analysis of the concrete cylinders, exposed to sodium chloride solution for one year, was employed to obtain apparent chloride diffusion coefficients for concrete specimens. MK was found to reduce the depth of chloride penetration into concrete when compared with that of unblended mixes. Corrosion rate and corrosion potential measurements were taken on steel bars embedded in concrete exposed to a saline environment under conditions of cyclic wetting and drying. The initiation time for corrosion was found to be significantly longer for MK blended mixes than for plain OPC systems. The aggregate-paste interfacial zone of MK blended systems was investigated by steady state diffusion of chloride ions through mortar containing glass beads as model aggregate. For the model aggregate specimens tested the work confirmed the hypothesis that properties of the bulk paste are the controlling factors in ionic diffusion through mortar.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Widespread use of glass fibre reinforced cement (GRC) has been impeded by concerns over its durability. Three degradation mechanisms are proposed - fibre corrosion, Ca(OHh precipitation and matrix densification - although their relative importance is debated. Matrices with reduced alkalinities and Ca(OH)2 contents are being developed; the aim of this study was to investigate their hydration and interaction with alkali-resistant fibres to determine the factors controlling their long-term durability, and assess the relevancy of accelerated ageing. The matrices studied were: OPC/calcium-sulphoaluminate cement plus metakaolin (C); OPC plus metakaolin (M); blast-furnace slag cement plus a micro-silica based additive (D); and OPC (O). Accelerated ageing included hot water and cyclic regimes prior to tensile testing. Investigations included pore solution expression, XRD, DTA/TG, SEM and optical petrography. Bond strength was determined from crack spacings using microstructural parameters obtained from a unique image analysis technique. It was found that, for the new matrices - pore solution alkalinities were lower; Ca(OH)2 was absent or quickly consumed; different hydrates were formed at higher immersion temperatures; degradation under 65°C immersion was an order of magnitude slower, and no interfilamental Ca(OH)2 was observed .It was concluded that: fibre weakening caused by flaw growth was the primary degradation mechanism and was successfully modelled on stress corrosion/static fatigue principles. OPC inferiority was attributed partly to its higher alkalinity but chiefly to the growth of Ca(OH)2 aggravating the degradation; and hot water ageing although useful in model formulation and contrasting the matrices, changed the intrinsic nature of the composites rather than simply accelerating the degradation mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study has investigated the inclusion of pulverised fuel ash (PFA) and blast furnace slag (BFS) into hardened cement pastes (HCP) in retarding the ingress of chloride ions and oxygen molecules from the external environment. The influence of environmental factors such as drying and carbonation on the pore structure and diffusional properties of OPC, OPC/30%PFA and OPC/65%BFS hardened pastes was investigated. Specimens were desorbed from a saturated surface dry condition to a near constant weight at 65% relative humidity (RH) while others were simultaneously exposed to a 65% RH atmosphere and a carbon dioxide atmosphere of up to 5% by volume until there were fully carbonated. The presence of the interfacial zone at the cement paste-aggregate interface was critically reviewed and identified. The influence of the interfacial zone on porosity and chloride ingress in assumed periodic composites of glass bead mortars was also studied. The investigations have demonstrated the following: (a) The use of fly ash and slag in blended cement pastes has resulted in a marked reduction in capillary porosity and rate of chloride ingress. (b) The ratio of oxygen to chloride diffusion coefficients increased from values close to 1 in permeable pastes, to values of around 15 in low-permeability blended fly ash and slag pastes. This supports the view that the diffusion of chloride ions is retarded by the surface charge of the hydrated cement gel in low-permeability pastes. (c) Compared with plain OPC pastes, the carbonation of blended fly ash and slag pastes resulted in a marked increase in the coarse capillary porosity and a corresponding increase in the oxygen and chloride diffusion rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The construction industry is one of the largest consumers of raw materials and energy and one of the highest contributor to green-houses gases emissions. In order to become more sustainable it needs to reduce the use of both raw materials and energy, thus lim-iting its environmental impact. Developing novel technologies to integrate secondary raw materials (i.e. lightweight recycled aggre-gates and alkali activated “cementless” binders - geopolymers) in the production cycle of concrete is an all-inclusive solution to im-prove both sustainability and cost-efficiency of construction industry. SUS-CON “SUStainable, Innovative and Energy-Efficiency CONcrete, based on the integration of all-waste materials” is an European project (duration 2012-2015), which aim was the inte-gration of secondary raw materials in the production cycle of concrete, thus resulting in innovative, sustainable and cost-effective building solutions. This paper presents the main outcomes related to the successful scaling-up of SUS-CON concrete solutions in traditional production plants. Two European industrial concrete producers have been involved, to design and produce both pre-cast components (blocks and panels) and ready-mixed concrete. Recycled polyurethane foams and mixed plastics were used as aggre-gates, PFA (Pulverized Fuel Ash, a by-product of coal fuelled power plants) and GGBS (Ground Granulated Blast furnace Slag, a by-product of iron and steel industries) as binders. Eventually, the installation of SUS-CON concrete solutions on real buildings has been demonstrated, with the construction of three mock-ups located in Europe (Spain, Turkey and Romania)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT

One of the binder systems with low environmental footprint is alkali activated slag concretes (AASC), made by adding alkalis such as sodium hydroxide and sodium silicate to industrial by-products such as ground granulated blast furnace slag (GGBS). Whilst they have the similar behaviour as that of traditional cement systems in terms of strength and structural behaviour, AASC do exhibit superior performance in terms of abrasion and acid resistance and fire protection.
In this article, the authors focus their attention on chloride ingress into different grades of AASC. The mix variables in AASC included water-to-binder, binder to aggregate ratio, percentage of alkali and the SiO2/Na2O ratio (silica modulus, Ms). The first challenge is to get mixes for different range of workability (with slump values from 40mm to 240mm) and reasonable early age and long term compressive strength according to each one. Then the chloride diffusion and migration in those mixes were measured and compared with same normal concretes in the existed literature based on chloride penetration depth. Comparing the chloride ingress between tradition concretes and AASCs is worthwhile to prove the possibility of increasing concrete lifetime in proximity to sea and deciding while such concretes are practical for use. Findings show that compared to the PC concretes, the AAS concretes have lower rate of chloride ingress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT: Researchers are focusing their attention on alternative binder systems using 100% supplementary cementitious materials as it allows better control over the microstructure formation and low to moderate environmental footprint. One such system being considered is alkali activated slag concretes (AASC), made by adding alkalis such as sodium hydroxide and sodium silicate to ground granulated blast furnace slag (GGBS). Whilst they have a similar behaviour as that of traditional cement systems in terms of strength and structural behaviour, AASC are reported to exhibit superior performance in terms of abrasion,acid resistance and fire protection.
In this article, the authors investigate chloride ingress into different grades of AASC. The mix variables in AASC included water to binder, and binder to aggregate ratio, percentage of alkali and the SiO2/Na2O ratio (silica modulus, Ms). The first challenge was to develop mixes for different range of workability (with slump values from 40mm to 240mm) and reasonable early age and long term compressive strength. Further chloride ingress into those mixes were assessed and compared with the data from normal concretes based on literature. Findings show that compared to the PC concretes, the AAS concretes have lower rate of chloride ingress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the near future, geopolymers or alkali-activated cementitious materials will be used as new high-performance construction materials of low environmental impact with a reasonable cost. This material is a good candidate to partially replace ordinary portland cement (OPC) in concrete as a major construction material that plays an outstanding role in the construction industry of different structures. Geopolymer materials are inorganic polymers based on alumina and silica units; they are synthesized from a wide range of dehydroxylated alumina-silicate powders condensed with alkaline silicate in a highly alkaline environment. Geopolymeric materials can be produced from a wide range of alumina-silica, including natural products--such as natural pozzolan and metakaolin--or coproducts--such as fly ash (coal and lignite), oil fuel ash, blast furnace or steel slag, and silica fume--and provide a route toward sustainable development. Using lesser amounts of calcium-based raw materials, lower manufacturing temperature, and lower amounts of fuel result in reduced carbon emissions for geopolymer cement manufacture up to 22 to 72% in comparison with portland cement. A study has been done by the authors to investigate the intrinsic nature of different types of Iranian natural pozzolans to determine the activators and methods that could be used to produce a geopolymer concrete based on alkali-activated natural pozzolan (AANP) and optimize mixture design. The mechanical behavior and durability of these types of geopolymer concrete were investigated and compared with normal OPC concrete mixtures cast by the authors and also reported in the literature. This paper summarizes the main conclusions of the research regarding pozzolanic activity, activator properties, engineering and durability properties, applications and evaluation of carbon footprint, and cost for AANP concrete.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The supersulfated cement (CSS) basically consist of up to 90% blast furnace slag, 10-20% of a source of calcium sulfate and a small amount of alkali activator, covered by European standard EN 15743/2010. Because of this SSC are considered "green cement" low environmental impact. The source of calcium sulfate used in the preparation of CSS can be obtained from natural sources, such as gypsum or from alternative sources (industrial products), such as phosphogypsum. The phosphogypsum is a by-product of the fertilizer industry, used in the production of phosphoric acid. In this process the phosphate rock is treated with sulfuric acid to give as the major product phosphoric acid (H3PO4), gypsum and a small amount of hydrofluoric acid. The chemical composition of gypsum is basically calcium sulfate dihydrate (CaSO4.2H2O), similar to gypsum, because it can be used in this type of cement. To become anhydrous, the calcination of gypsum is necessary. The availability of the source of calcium sulfate to react with the slag is dependent on its solubility that is directly related to its calcination temperature. The solubility of the anhydrous gypsum decreases with increasing calcination temperature. This study investigated the influence of temperature of calcination of phosphogypsum on the performance of CSS. Samples were prepared with 10 and 20% of phosphogypsum calcinated at 350 to 650 ° C using KOH as an alkaline activator at three different concentrations (0.2, 0.5 and 0.8%). The results showed that all mortars presented the minimum values required by EN 15743/2010 for 7 and 28 days of hydration. In general CSS containing 10% phosphogypsum showed slightly better compressive strength results using a lower calcination temperature (350 °C) and curing all ages. The CSS containing 20% of calcined gypsum at 650 °C exhibit satisfactory compressive strenght at 28 days of hydration, but at later ages (56 to 90 days) it strongly reduced. This indicates that the calcination temperature of phosphogypsum has a strong influence on the performance of the CSS.