971 resultados para Biomechanical Phenomena


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El participi i altres fenòmens relacionats en el Castellà i el Català antic

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proyecto de investigación elaborado a partir de una estancia en el Institute for Atmospheric and Climate Science, a Alemanya, entre 2010 y 2012. La radiación solar que alcanza la superficie terrestre es un factor clave entre los procesos que controlan el clima de la Tierra, dado el papel que desempeñan en el balance energético y el ciclo hidrológico. Establecer su contribución al cambio climático reciente supone una gran dificultad debido a la complejidad de los procesos implicados, la gran cantidad de información requerida, y la incertidumbre de las bases de datos disponibles en la actualidad. Así, el objetivo principal del proyecto ha consistido en generar una base de datos de insolación incluyendo las series más largas (desde finales del siglo XIX) disponibles en toda Europa. Esta base de datos complementa para nuestro continente el Global Energy Balance Archive (GEBA) que mantiene y gestiona el grupo que ha acogido al receptor de la ayuda postdoctoral, y permite extender espacial (especialmente en países del sur de Europa) y temporalmente las series climáticas disponibles de mediciones de irradiancia solar. Como la insolación es un proxy de la irradiancia solar, el proyecto actual también ha tratado de calibrar de forma exhaustiva ambas variables, a fin de generar una nueva base de datos reconstruida de esta segunda variable que esté disponible desde finales del siglo XIX en Europa. Un segundo objetivo del proyecto ha consistido en continuar trabajando a escala de mayor detalle sobre la Península Ibérica, con el fin de proporcionar una mejor comprensión del fenómeno del “global dimming/brightening” y su impacto en el ciclo hidrológico y balance energético. Finalmente, un tercer objetivo del presente proyecto postdoctoral ha consistido en continuar estudiando los posibles ciclos semanales a gran escala de diferentes variables climáticas, línea de investigación de interés para la detección de posibles efectos de los aerosoles antrópicos en el clima a escalas temporales breves, y consecuentemente estrechamente vinculado al fenómeno del “global dimming/brightening”.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: Individual rupture risk assessment of intracranial aneurysms is a major issue in the clinical management of asymptomatic aneurysms. Aneurysm rupture occurs when wall tension exceeds the strength limit of the wall tissue. At present, aneurysmal wall mechanics are poorly understood and thus, risk assessment involving mechanical properties is inexistent. Aneurysm computational hemodynamics studies make the assumption of rigid walls, an arguable simplification. We therefore aim to assess mechanical properties of ruptured and unruptured intracranial aneurysms in order to provide the foundation for future patient-specific aneurysmal risk assessment. This work also challenges some of the currently held hypotheses in computational flow hemodynamics research. Methods: A specific conservation protocol was applied to aneurysmal tissues following clipping and resection in order to preserve their mechanical properties. Sixteen intracranial aneurysms (11 female, 5 male) underwent mechanical uniaxial stress tests under physiological conditions, temperature, and saline isotonic solution. These represented 11 unruptured and 5 ruptured aneurysms. Stress/strain curves were then obtained for each sample, and a fitting algorithm was applied following a 3-parameter (C(10), C(01), C(11)) Mooney-Rivlin hyperelastic model. Each aneurysm was classified according to its biomechanical properties and (un)rupture status.Results: Tissue testing demonstrated three main tissue classes: Soft, Rigid, and Intermediate. All unruptured aneurysms presented a more Rigid tissue than ruptured or pre-ruptured aneurysms within each gender subgroup. Wall thickness was not correlated to aneurysmal status (ruptured/unruptured). An Intermediate subgroup of unruptured aneurysms with softer tissue characteristic was identified and correlated with multiple documented risk factors of rupture. Conclusion: There is a significant modification in biomechanical properties between ruptured aneurysm, presenting a soft tissue and unruptured aneurysms, presenting a rigid material. This finding strongly supports the idea that a biomechanical risk factor based assessment should be utilized in the to improve the therapeutic decision making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: In vitro mechanical injury of articular cartilage is useful to identify events associated with development of post-traumatic osteoarthritis (OA). To date, many in vitro injury models have used animal cartilage despite the greater clinical relevance of human cartilage. We aimed to characterize a new in vitro injury model using elderly human femoral head cartilage and compare its behavior to that of an existing model with adult bovine humeral head cartilage. DESIGN: Mechanical properties of human and bovine cartilage disks were characterized by elastic modulus and hydraulic permeability in radially confined axial compression, and by Young's modulus, Poisson's ratio, and direction-dependent radial strain in unconfined compression. Biochemical composition was assessed in terms of tissue water, solid, and glycosaminoglycan (GAG) contents. Responses to mechanical injury were assessed by observation of macroscopic superficial tissue cracks and histological measurements of cell viability following single injurious ramp loads at 7 or 70%/s strain rate to 3 or 14 MPa peak stress. RESULTS: Confined compression moduli and Young's moduli were greater in elderly human femoral cartilage vs adult bovine humeral cartilage whereas hydraulic permeability was less. Radial deformations of axially compressed explant disks were more anisotropic (direction-dependent) for the human cartilage. In both cartilage sources, tissue cracking and associated cell death during injurious loading was common for 14 MPa peak stress at both strain rates. CONCLUSION: Despite differences in mechanical properties, acute damage induced by injurious loading was similar in both elderly human femoral cartilage and adult bovine humeral cartilage, supporting the clinical relevance of animal-based cartilage injury models. However, inherent structural differences such as cell density may influence subsequent cell-mediated responses to injurious loading and affect the development of OA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate detection of subpopulation size determinations in bimodal populations remains problematic yet it represents a powerful way by which cellular heterogeneity under different environmental conditions can be compared. So far, most studies have relied on qualitative descriptions of population distribution patterns, on population-independent descriptors, or on arbitrary placement of thresholds distinguishing biological ON from OFF states. We found that all these methods fall short of accurately describing small population sizes in bimodal populations. Here we propose a simple, statistics-based method for the analysis of small subpopulation sizes for use in the free software environment R and test this method on real as well as simulated data. Four so-called population splitting methods were designed with different algorithms that can estimate subpopulation sizes from bimodal populations. All four methods proved more precise than previously used methods when analyzing subpopulation sizes of transfer competent cells arising in populations of the bacterium Pseudomonas knackmussii B13. The methods' resolving powers were further explored by bootstrapping and simulations. Two of the methods were not severely limited by the proportions of subpopulations they could estimate correctly, but the two others only allowed accurate subpopulation quantification when this amounted to less than 25% of the total population. In contrast, only one method was still sufficiently accurate with subpopulations smaller than 1% of the total population. This study proposes a number of rational approximations to quantifying small subpopulations and offers an easy-to-use protocol for their implementation in the open source statistical software environment R.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tension-band wiring is a recognised standard treatment for fixation of olecranon fractures. The classical operation technique is well known and widespread among the orthopaedic surgeons. Nevertheless complications like K-wire migration or skin perforation and difficult technical as well as anatomical prerequisites require better-adapted operation fixation methods. In older female patients a cut through of the Kirschner wires with concomitant secondary displacement was observed. We intent to develop a new, better adapted operation technique for olecranon fractures in the old patients, in order to decrease complications and follow-up procedures. In this study we compare two different K-wire positions: 10 models of the classical AO tension-banding to 10 models with adapted K-wire insertion. In this group the K-wire passes from the tip of the olecranon to the posterior cortical of the distal fragment of the ulna. We tested maximal failure load, maximal opening angle as well as maximal work to achieve maximal force. In either technique we were able to determine different variables: a maximal failure load of more than 600N (p = 0.94) for both fixation methods and a maximal opening angle for both techniques of about 10° (p = 0.86). To achieve the maximal force our modified technique required a slightly increased work (p = 0.16). In this study no statistical significant differences between the two fixation techniques was shown. This leads to the conclusion that the modified version is comparable to the classical operation technique considering the stability, but due to the adaption of the angle in the modified procedure, less lesions of neurovascular structures on the volar side can be expected. To support our findings cadaver studies are needed for further investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to examine the physiological and biomechanical changes occurring in a subject after running 8,500 km in 161 days (i.e. 52.8 km daily). Three weeks before, 3 weeks after (POST) and 5 months after (POST+5) running from Paris to Beijing, energy cost of running (Cr), knee flexor and extensor isokinetic strength and biomechanical parameters (using a treadmill dynamometer) at different velocities were assessed in an experienced ultra-runner. At POST, there was a tendency toward a 'smoother' running pattern, as shown by (a) a higher stride frequency and duty factor, and a reduced aerial time without a change in contact time, (b) a lower maximal vertical force and loading rate at impact and (c) a decrease in both potential and kinetic energy changes at each step. This was associated with a detrimental effect on Cr (+6.2%) and a loss of strength at all angular velocities for both knee flexors and extensors. At POST+5, the subject returned to his original running patterns at low but not at high speeds and maximal strength remained reduced at low angular velocities (i.e. at high levels of force). It is suggested that the running pattern changes observed in the present study were a strategy adopted by the subject to reduce the deleterious effects of long distance running. However, the running pattern changes could partly be linked to the decrease in maximal strength.