996 resultados para Biology, General|Biology, Genetics|Chemistry, Biochemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Duplication at the Xq28 band including the MECP2 gene is one of the most common genomic rearrangements identified in neurodevelopmentally delayed males. Such duplications are non-recurrent and can be generated by a non-homologous end joining (NHEJ) mechanism. We investigated the potential mechanisms for MECP2 duplication and examined whether genomic architectural features may play a role in their origin using a custom designed 4-Mb tiling-path oligonucleotide array CGH assay. Each of the 30 patients analyzed showed a unique duplication varying in size from similar to 250 kb to similar to 2.6 Mb. Interestingly, in 77% of these non-recurrent duplications, the distal breakpoints grouped within a 215 kb genomic interval, located 47 kb telomeric to the MECP2 gene. The genomic architecture of this region contains both direct and inverted low-copy repeat (LCR) sequences; this same region undergoes polymorphic structural variation in the general population. Array CGH revealed complex rearrangements in eight patients; in six patients the duplication contained an embedded triplicated segment, and in the other two, stretches of non-duplicated sequences occurred within the duplicated region. Breakpoint junction sequencing was achieved in four duplications and identified an inversion in one patient, demonstrating further complexity. We propose that the presence of LCRs in the vicinity of the MECP2 gene may generate an unstable DNA structure that can induce DNA strand lesions, such as a collapsed fork, and facilitate a Fork Stalling and Template Switching event producing the complex rearrangements involving MECP2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GB virus C/hepatitis G (GBV-C) is an RNA virus of the family Flaviviridae. Despite replicating with an RNA-dependent RNA polymerase, some previous estimates of rates of evolutionary change in GBV-C suggest that it fixes mutations at the anomalously low rate of similar to 100(-7) nucleotide substitution per site, per year. However, these estimates were largely based on the assumption that GBV-C and its close relative GBV-A (New World monkey GB viruses) codiverged with their primate hosts over millions of years. Herein, we estimated the substitution rate of GBV-C using the largest set of dated GBV-C isolates compiled to date and a Bayesian coalescent approach that utilizes the year of sampling and so is independent of the assumption of codivergence. This revealed a rate of evolutionary change approximately four orders of magnitude higher than that estimated previously, in the range of 10(-2) to 10(-3) sub/site/year, and hence in line with those previously determined for RNA viruses in general and the Flaviviridae in particular. In addition, we tested the assumption of host-virus codivergence in GBV-A by performing a reconciliation analysis of host and virus phylogenies. Strikingly, we found no statistical evidence for host-virus codivergence in GBV-A, indicating that substitution rates in the GB viruses should not be estimated from host divergence times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Warfarin-dosing pharmacogenetic algorithms have presented different performances across ethnicities, and the impact in admixed populations is not fully known. Aims: To evaluate the CYP2C9 and VKORC1 polymorphisms and warfarin-predicted metabolic phenotypes according to both self-declared ethnicity and genetic ancestry in a Brazilian general population plus Amerindian groups. Methods: Two hundred twenty-two Amerindians (Tupinikin and Guarani) were enrolled and 1038 individuals from the Brazilian general population who were self-declared as White, Intermediate (Brown, Pardo in Portuguese), or Black. Samples of 274 Brazilian subjects from Sao Paulo were analyzed for genetic ancestry using an Affymetrix 6.0 (R) genotyping platform. The CYP2C9*2 (rs1799853), CYP2C9*3 (rs1057910), and VKORC1 g.-1639G>A (rs9923231) polymorphisms were genotyped in all studied individuals. Results: The allelic frequency for the VKORC1 polymorphism was differently distributed according to self-declared ethnicity: White (50.5%), Intermediate (46.0%), Black (39.3%), Tupinikin (40.1%), and Guarani (37.3%) (p < 0.001), respectively. The frequency of intermediate plus poor metabolizers (IM + PM) was higher in White (28.3%) than in Intermediate (22.7%), Black (20.5%), Tupinikin (12.9%), and Guarani (5.3%), (p < 0.001). For the samples with determined ancestry, subjects carrying the GG genotype for the VKORC1 had higher African ancestry and lower European ancestry (0.14 +/- 0.02 and 0.62 +/- 0.02) than in subjects carrying AA (0.05 +/- 0.01 and 0.73 +/- 0.03) (p = 0.009 and 0.03, respectively). Subjects classified as IM + PM had lower African ancestry (0.08 +/- 0.01) than extensive metabolizers (0.12 +/- 0.01) (p = 0.02). Conclusions: The CYP2C9 and VKORC1 polymorphisms are differently distributed according to self-declared ethnicity or genetic ancestry in the Brazilian general population plus Amerindians. This information is an initial step toward clinical pharmacogenetic implementation, and it could be very useful in strategic planning aiming at an individual therapeutic approach and an adverse drug effect profile prediction in an admixed population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene XRCC3 (X-ray cross complementing group 3) has the task of repairing damage that occurs when there is recombination between homologous chromosomes. Repair of recombination between homologous chromosomes plays an important role in maintaining genome integrity, although it is known that double-strand breaks are the main inducers of chromosomal aberrations. Changes in the XRCC3 protein lead to an increase in errors in chromosome segregation due to defects in centrosomes, resulting in aneuploidy and other chromosomal aberrations, such as small increases in telomeres. We examined XRCC3 Thr241Met polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. The individuals of the control group (N = 100) were selected from the general population of the Sao Paulo State. Odds ratio and 95%CI were calculated using a logistic regression model. Patients who had the allele Met of the XRCC3 Thr241Met polymorphism had a significantly increased risk of tumor development (odds ratio = 3.13; 95% confidence interval = 1.50-6.50). There were no significant differences in overall survival of patients. We suggest that XRCC3 Thr241Met polymorphism is involved in susceptibility for developing astrocytomas and glioblastomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated whether Melipona quadrifasciata worker mandibular gland secretions contribute directly to their cuticular hydrocarbon profile. The mandibular gland secretion composition and cuticular surface compounds of newly emerged worker bees, nurse bees, and foragers were determined by gas chromatography and mass spectrometry and compared. Both the mandibular gland secretions and the cuticular surface compounds of all worker stages were found to be composed almost exclusively of hydrocarbons. Although the relative proportion of hydrocarbons from the cuticular surface and gland secretion was statistically different, there was a high similarity in the qualitative composition between these structures in all groups of bees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Documenting the Neotropical amphibian diversity has become a major challenge facing the threat of global climate change and the pace of environmental alteration. Recent molecular phylogenetic studies have revealed that the actual number of species in South American tropical forests is largely underestimated, but also that many lineages are millions of years old. The genera Phyzelaphryne (1 sp.) and Adelophryne (6 spp.), which compose the subfamily Phyzelaphryninae, include poorly documented, secretive, and minute frogs with an unusual distribution pattern that encompasses the biotic disjunction between Amazonia and the Atlantic forest. We generated >5.8 kb sequence data from six markers for all seven nominal species of the subfamily as well as for newly discovered populations in order to (1) test the monophyly of Phyzelaphryninae, Adelophryne and Phyzelaphryne, (2) estimate species diversity within the subfamily, and (3) investigate their historical biogeography and diversification. Phylogenetic reconstruction confirmed the monophyly of each group and revealed deep subdivisions within Adelophryne and Phyzelaphryne, with three major clades in Adelophryne located in northern Amazonia, northern Atlantic forest and southern Atlantic forest. Our results suggest that the actual number of species in Phyzelaphryninae is, at least, twice the currently recognized species diversity, with almost every geographically isolated population representing an anciently divergent candidate species. Such results highlight the challenges for conservation, especially in the northern Atlantic forest where it is still degraded at a fast pace. Molecular dating revealed that Phyzelaphryninae originated in Amazonia and dispersed during early Miocene to the Atlantic forest. The two Atlantic forest clades of Adelophryne started to diversify some 7 Ma minimum, while the northern Amazonian Adelophryne diversified much earlier, some 13 Ma minimum. This striking biogeographic pattern coincides with major events that have shaped the face of the South American continent, as we know it today. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss here principal biochemical transformations of retinoid molecules in the visual cycle. We focus our analysis on the accumulating evidence of alternate pathways and functional redundancies in the cycle. The efficiency of the visual cycle depends, on one hand, on fast regeneration of the photo-bleached chromophores. On the other hand, it is crucial that the cyclic process should be highly selective to avoid accumulation of byproducts. The state-of-the-art knowledge indicates that single enzymatically active components of the cycle are not strictly selective and may require chaperones to enhance their rates. It appears that protein–protein interactions significantly improve the biological stability of the visual cycle. In particular, synthesis of thermodynamically less stable 11-cis-retinoid conformers is favored by physical interactions of the isomerases present in the retina with cellular retinaldehyde binding protein

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method employing isotopically- and photoaffinity-labeled probes and polyclonal and monoclonal antibody to the probes for the identification, isolation and recovery of protein receptors is described. Antibody was raised against N-(3-(p-azido-m-($\sp{125}$I) -iodophenyl)) propionate (AIPP) coupled to and photolyzed to BSA. The antibodies specifically bound AIPP-derivatized proteins. An isolation system was developed utilizing this probe and two antigenically identical reversible analogues. N-(3-((p-azido-m-($\sp{125}$I) -iodo-phenyl)propionyl)amidoethyl-1,3-dithiopropionyl) succinimide (Reversible $\sp{125}$I-AIPPS) reacts with primary amines and N-(((3-p-azido-m-($\sp{125}$I) -iodophenyl)propionyl)amidoethyl)dithiopyridine ($\sp{125}$I-AIPP-PDA) reacts with reduced thiols. The applicability of the system was established by derivatizing known ligands (Transferrin and Interferon-alpha) with one of the probes. The ligand-probe was then allowed to interact with its receptor by incubation with SS5 lymphoma cells and cross-linked by photolysis at 300 nm. The photolyzed ligand/probe/receptor preparation was then recovered with AIPP antibody. Utilization of N-(3-((p-azido-m-($\sp{125}$I) -iodo-phenyl-propionyl)-amidoethyl-1,3-dithiopropionyl) succinimide (Reversible $\sp{125}$I-AIPPS) allowed the components of the photolyzed complex to be separated by treatment with 2-mercaptoethanol in the SDS-PAGE solubilization buffer. Ligand and receptor labeling were then assessed by Coomassie staining and autoradiography. Results of receptor assays suggest that $\sp{125}$I-AIPP was, indeed, transferred to moieties that represent the receptors for both Transferrin and Interferon-alpha. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin filament regulation of muscle contraction is a calcium dependent process mediated by the Tn complex. Calcium is released into the sarcomere and is bound by TnC. The subsequent conformation change in TnC is thought to begin a cascade of events that result in the activation of the actin-myosin ATPase. While the general events of this cascade are known, the molecular mechanisms of this signal transduction event are not. Recombinant DNA techniques, physiological and biochemical studies have been used to localize and characterize the structural domains of TnC that play a role in the calcium dependent signal transduction event that serves to trigger muscle contraction. The strategy exploited the observed functional differences between the isoforms of TnC to map regions of functional significance to the proteins. Chimeric cardiac-skeletal TnC proteins were generated to localize the domains of TnC that are required for maximal function in the myofibrilar ATPase assay. Characterization of these regions has yielded information concerning the molecular mechanism of muscle contraction. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently several novel and previously reported non-protein-coding RNAs (ncRNAs) have been identified to be upregulated upon Epstein-Barr virus (EBV) infection in human B-lymphocytes. A group of these significantly upregulated ncRNAs are called vault RNAs (vtRNAs). ,b Only about 5% of the total cellular vtRNAs are connected to the vault particle, the largest known ribonucleoprotein particle (RNP) in eukaryotic cells. However the function of this ncRNA family and moreover of the vault particle remains still rather unclear. Our previous findings suggest a link between EBV infection and vtRNA expression. Consequently we are interested which part of the viral genome is responsible for the upregulation and moreover which function the vtRNAs might possess during virus propagation. To address this question we have separately overexpressed specific EBV-encoded, latently expressed proteins in BL2-cells to determine the influence on the vault RNA levels. Thereby we identified one EBV-encoded protein, called Latent Membrane Protein 1 (LMP1), which significantly contributes to the vtRNA upregulation. We used LMP1 mutants to characterize the region of the protein and the responsible pathway for triggering the elevated vtRNA expression. Our results suggest that the NFkB- pathway might be involved in this process. To investigate a possible functional connection between the vtRNA and EBV infection, we have overexpressed vtRNA1-1 in BL41, a cell line usually not expressing this vault RNA. We show that overexpression of vtRNA1-1 leads to a better viral establishment and markedly protects cells from undergoing apoptosis. Knock-down of the major vault protein, the main component of the vault particle, had no effect on EBV infection and apoptosis resistance. Thus these results support the view that the observed phenotype is caused by the vtRNA rather than the vault particle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urea cycle disorders (UCD) are due to defects of any of its six enzymes or two transporters. The definitive diagnosis of defects of the three mitochondrial enzymes, N-acetylglutamate synthase (NAGS), carbamylphosphate synthetase I (CPS1) and ornithine transcarbamylase (OTC) depends on either molecular mutation analysis or measurement of enzyme activity, whereas the diagnosis of deficiencies of the three cytosolic enzymes argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL) and arginase I (ARG1) is usually straightforward, based on marker metabolites. Enzyme assays for all UCD have been used since their first description, for disease confirmation and in some instances even for prenatal diagnosis. The genetic bases of the UCD have only been unraveled from the 1980s; the last gene cloned being the NAGS gene in 2002. In this review we discuss the enzymatic assays for all urea cycle enzymes from a historical perspective, their potential and drawbacks, and the current role of enzymatic analysis in UCD in general.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics. Such observations are fundamentally important for understanding molecular-level mechanisms governing these systems. Examples reviewed here include the effects of allostery on the stoichiometry of ligand binding in the presence of fluorescent ligands; the observation of subdomain partitioning of membrane proteins due to microenvironment effects; and the use of single particle tracking experiments to elucidate characteristics of membrane protein diffusion and the direct measurement of thermodynamic properties, which govern the free energy landscape of protein dimerization. The review of such characteristic topics represents a snapshot of efforts to push the boundaries of fluorescence microscopy of membrane proteins to the absolute limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although T. brucei has to challenge tremendous environment changes, e.g. switch from the bloodstream form in mammalian hosts to the mid gut form present in tsetse flies, there is no evidence for differential regulation of RNA Pol II transcription. Instead, constitutive transcription appears to occur. This observation indicates that protein levels have to be regulated by post-transcriptional mechanisms. It has been shown that non-protein coding RNAs (ncRNAs) are crucial in regulatory networks (e.g. chromosome remodelling; RNA polymerase activity; mRNA turnover; etc.), but all of the recently discovered ncRNAs involved in translation regulation target the mRNA rather than the ribosome. This is unexpected, since the ribosome has a central role during gene expression and due to the assumption that the primordial translation system most likely received direct regulatory input from small molecules including ncRNA cofactors. In our lab, it has been discovered that ncRNAs are able to directly bind to the ribosome, therefore influencing the translation rate in Haloferax volcanii and Saccharomyces cerevisiae. In order to extend this idea of ribosome-binding ncRNAs in mammalian parasites, we want to investigate this mechanism in T. brucei. Accordingly, we performed a genomic screen for small ribosome-associated RNAs followed by functional analyses of possible candidates. With the help of this genomic screen, we found tRNAs that are alternated and tRNA halves that are differentially expressed upon nutritional stress.