993 resultados para Biology, Botany|Biology, Ecology
Resumo:
This study surveys the occurrence of nodulation in woody legume species in Panamá and Costa Rica, describes nodule and root characteristics, and researches host-bacteria specificity, nodulation potential of soils, and the effects of light, added nitrogen, and rhizobia and VA mycorrhizal fungi inoculation on seedling growth. I examined 83 species in 37 genera and found 80% to be nodulated. Percent nodulated species in the Caesalpinioideae, Mimosoideae, and Papilionoideae was 17, 95, and 86, respectively, with no correlation between nodule morphology and tribal classification. Nodules formed mainly at root branch points which supports epidermal breaks as an important rhizobia infection route. More non-nodulated than nodulated species had root hairs. Several species emitted volatile sulfur-containing compounds, including the toxic compound ethylmercaptan, from roots, germinating seeds, and other tissues. These emissions may have an allelopathic action against pathogens, predators, or other plants. In contrast to the general non-specificity of most legumes for rhizobia, Mimosa pigra L. was highly specific and only nodulated in flooded soils. This species' specificity, combined with a limited occurrence of its root nodule bacteria may limit its natural distribution, but its spread as an invasive weed is facilitated when fill material from rivers is deposited in other areas. ^ An experimental light level of 1.5% of full sun completely inhibited seedling nodulation, as do similar naturally low levels in forest understory. In the forest, trees and seedlings were not nodulated. in some soils with suspected high N content. For six experimental species, added N progressively increased seedling growth while decreasing nodule biomass; at the highest level of added N nodulation was completely suppressed. Species and individuals showed variation in nodule biomass at high N applications which may indicate an opportunity for genetic selection for optimal N acquisition. Rhizobia inoculation had a small positive effect on seedling shoot growth, but VA mycorrhiza inoculation overwhelmingly increased seedling size, biomass, and leaf mineral concentration. In lowland tropical forest, VA mycorrhizal colonization appears indispensable for legume nodulation because of the fungus' ability to supply P in deficient soils. This requirement makes the legume-rhizobia-mycorrhiza association obligately tripartite. ^
Resumo:
Climate warming is predicted to cause an increase in the growing season by as much as 30% for regions of the arctic tundra. This will have a significant effect on the physiological activity of the vascular plant species and the ecosystem as a whole. The need to understand the possible physiological change within this ecosystem is confounded by the fact that research in this extreme environment has been limited to periods when conditions are most favorable, mid June–mid August. This study attempted to develop the most comprehensive understanding to date of the physiological activity of seven tundra plant species in the Alaskan Arctic under natural and lengthened growing season conditions. Four interrelated lines of research, scaling from cellular signals to ecosystem processes, set the foundation for this study. ^ I established an experiment looking at the physiological response of arctic sedges to soil temperature stress with emphasis on the role of the hormone abscisic acid (ABA). A manipulation was also developed where the growing season was lengthened and soils were warmed in an attempt to determine the maximum physiological capacity of these seven vascular species. Additionally, the physiological capacities of four evergreens were tested in the subnivean environment along with the potential role anthocyanins play in their activity. The measurements were scaled up to determine the physiological role of these evergreens in maintaining ecosystem carbon fluxes. ^ These studies determined that soil temperature differentials significantly affect vascular plant physiology. ABA appears to be a physiological modifier that limits stomatal processes when root temperatures are low. Photosynthetic capacity was limited by internal plant physiological mechanisms in the face of a lengthened growing season. Therefore shifts in ecosystem carbon dynamics are driven by changes in species composition and biomass production on a per/unit area basis. These studies also found that changes in soil temperatures will have a greater effect of physiological processes than would the same magnitude of change in air temperature. The subnivean environment exhibits conditions that are favorable for photosynthetic activity in evergreen species. These measurements when scaled to the ecosystem have a significant role in limiting the system's carbon source capacity. ^
Resumo:
Bark extracts of the African cherry (Prunus africana) are used to treat benign prostatic hyperplasia. This study examined the effects of commercial bark harvest on population dynamics in the Kilum-Ijim Forest Preserve on Mount Oku, Cameroon and on traditional uses. P. africana is valued for its timber and as fuel although its greatest value is as a traditional medicine for human and animal ailments. Harvest has depleted the resource and has eroded traditional forest protection practices. I constructed matrix models to examine the effects of bark harvest on population structure and on population dynamics in harvested and unharvested populations. Harvesting simulations examined the effect on the population growth rate (λ) with differing levels of mortality of harvest-sized and large trees and differing harvest frequencies. Size class frequencies for the entire forest decreased in a reverse j-shaped curve, indicating adequate recruitment in the absence of harvest. Individual plots showed differences from the overall forest data, suggesting effects of natural and man-made perturbations, particularly due to bark harvest. One plot (harvested in the 1980s) showed a temporal difference in λ and fluctuated around one, due to alternating high and low fruiting years; other unharvested plots showed smaller temporal differences. Harvested plots (harvested illegally in 1997) had values of λ less than one and showed small temporal differences. The control plot also showed λ less than one, due to poor recruitment in the closed canopy forest. The value of λ for the combined data was 0.9931 suggesting a slightly declining population. The elasticity matrix for the combined data indicated the population growth rate was most sensitive to the survival of the large reproductive trees (42.5% of the elasticity). In perturbation analyses, reducing the survival of the large trees caused the largest reductions in λ. Simulations involving harvesting frequency indicated λ returns to pre-harvest conditions if trees are re-harvested after 10–15 years, but only if the large trees are left unharvested. Management scenarios suggest harvest can be sustainable if seedlings and small saplings are planted in the forest and actively managed, although large-scale plantations may be the only feasible option to meet market demand. ^
Resumo:
Black band disease of corals consists of a microbial community dominated by the cyanobacteriurn Phormidium corallyticum. The disease primarily affects reef-framework coral species, Active black band disease continually opens up new substrate in reef environments by destroying coral tissue as the disease line advances across the surface of infected colonies. A field study was carried out to determine the abundance and distribution of black band disease on the reef building corals in the Florida Keys. During July of 1992 and 1993, up to 0.72% of coral colonies were infected with black band disease. Analysis of the distribution showed that the disease was clumped. Seasonal patters varied, with some coral colonies infected year round, others exhibiting reinfection from summer 1992 to summer 1993, and some colonies infected for one year only. Statistical analysis of black band disease incidence in relation to various environmental parameters revealed that black band disease was associated with relatively shallow water depths, higher temperatures, elevated nitrite levels, and decreased ortho-phosphate levels. Additional field studies determined recovery of scleractinian coral colonies damaged or killed through the activities of black band disease over a five-year period. These studies determined if the newly exposed substrate was recolonized through scleractinian recruitment, if there was overgrowth of the damaged areas by the formerly diseased colony, or if coral tissue destruction continued after the cessation of black band disease activity. Tissue loss continued on all coral colonies with only one colony exhibiting new tissue growth. The majority of recolonization was by non-reef-framework corals and octocorallians, limited recruitment by framework species was observed. Physiological studies of P. corallyticum were carried out to investigate the photosynthetic capacity of this cyanobacterium, and to determine if this species has the ability to fix dinitrogen. The results of this research demonstrated that P. corallyticum reaches maximum photosynthetic rates at very low light intensities (27.9 μE/m/sec), and that P. corallyticum is able to carry out oxygenic photosynthesis in the presence of sulfide, an ability that is uncommon in prokaryotic organisms. ^
Resumo:
This research first evaluated levels and type of herbivory experienced by Centrosema virginianum plants in their native habitat and how florivory affected the pollinator activity. I found that populations of C. virginianum in two pine rockland habitat fragments experienced higher herbivory levels (15% and 22%) compared with plants in the protected study site (8.6%). I found that bees (Hymenoptera) pollinated butterfly pea. Furthermore, I found that florivores had a negative effect in the pollinators visitation rates and therefore in the seed set of the population. ^ I then conducted a study using a greenhouse population of C. virginianum. I applied artificial herbivory treatments: control, mild herbivory and severe herbivory. Flower size, pollen produced, ovules produced and seeds produced were negatively affected by herbivory. I did not find difference in nectar volume and quality by flowers among treatments. Surprisingly, severely damaged plants produced flowers with larger pollen than those from mildly damaged and undamaged plants. Results showed that plants tolerated mild and severe herbivory with 6% and 17% reduction of total fitness components, respectively. However, the investment of resources was not equisexual. ^ A comparison in the ability of siring seeds between large and small pollen was necessary to establish the biological consequence of size in pollen performance. I found that fruits produced an average of 18.7 ± 1.52 and 17.7 ± 1.50 from large and small pollen fertilization respectively. These findings supported a pollen number-size trade-off in plants under severe herbivory treatments. As far as I know, this result has not previously been reported. ^ Lastly, I tested how herbivory influenced seed abortion patterns in plants, examining how resources are allocated on different regions within fruits under artificial herbivory treatments. I found that self-fertilized fruits had greater seed abortion rates than cross-fertilized fruits. The proportion of seeds aborted was lower in the middle regions of the fruits in cross-fertilized fruits, producing more vigorous progeny. Self-fertilized fruits did not show patterns of seedling vigor. I also found that early abortion was higher closer to the peduncular end of the fruits. Position of seeds within fruits could be important in the seed dispersion mechanism characteristic of this species. ^
Resumo:
Melaleuca quinquenervia (Cav.) Blake (Myrtaceae) was imported into Florida from Australia over a century ago as a landscape plant. A favorable climate and periodic wildfires helped M. quinquenervia thrive; it now occupies about 200,000 hectares in southern Florida. A biological control (i.e., biocontrol) program against M. quinquenervia has been initiated, but not all biocontrol releases are successful. Some scientists have argued that poor biocontrol agent success may relate to genetic differences among populations of invasive weeds. I tested this premise by determining (1) the number and origins of M. quinquenervia introductions into Florida, (2) whether multiple introduction events resulted in the partitioning of Florida's M. quinquenervia populations into discrete biotypes, and (3) whether Oxyops vitiosa, an Australia snout beetle imported to control this weed, might discriminate among putative M. quinquenervia biotypes. Careful scrutiny of early horticultural catalogs and USDA plant introduction records suggested at least six distinct introduction events. Allozyme analyses indicated that the pattern of these introductions, and the subsequent redistribution of progeny, has resulted in geographic structuring of the populations in southern Florida. For example, trees on Florida's Gulf Coast had a greater effective number of alleles and exhibited greater heterozygosity than trees on the Atlantic Coast. Essential oil yields from M. quinquenervia leaves followed a similar trend; Gulf Coast trees yielded nearly twice as much oil as Atlantic Coast trees when both were grown in a common garden. These differences were partially explained by the predominance of a chemical phenotype (chemotype) very rich in the sesquiterpene (E)-nerolidol in M. quinquenervia trees from the Gulf Coast, but rich in a mixture of the monoterpene 1,8-cineole and the sesquiterpene viridiflorol in trees from the Atlantic Coast. Performance of O. vitiosa differed dramatically in laboratory studies depending on the chemotype of the foliage they were fed. Larval survivorship was four-fold greater on the (E)-nerolidol chemotype. Growth was also greater, with adult O. vitiosa gaining nearly 50% more biomass on the (E)-nerolidol plants than on the second chemotype. The results of this study thus confirmed the premise that plant genotype can affect the population dynamics of insects released as weed biocontrols. ^
Resumo:
Isla del Coco (Cocos Island) is a small volcanic island located in the Pacific 500 km west of Costa Rica. Three collecting trips to Isla del Coco, in addition to herbarium research, were completed in order to assess the floristic diversity of the island. The current flora of Isla del Coco contains 262 plant species of which 37 (19.4%) are endemic. This study reports 58 species as new to the island. Seventy-one species (27.1%) were identified as introduced by humans. In addition, five potentially invasive plant species are identified. Seven vegetation types are identified on the island: bayshore, coastal cliff, riparian, low elevation humid forest, high elevation cloud forest, landslide and islet. ^ The biogeographic affinities of the native and endemic species are with Central America/northern South America and to a lesser extent, the Caribbean. Endemic species in the genus Epidendrum were investigated to determine whether an insular radiation event had produced two species found on Isla del Coco. Phylogenetic analysis of the internal transcribed spacer (ITS) of nuclear ribosomal DNA was not able to disprove that the endemic species in this genus are not sister species. Molecular biogeographic analyses of ITS sequence data determined that the Isla del Coco endemic species in the genera Epidendrum, Pilea and Psychotria are most closely related to Central American/northern South American taxa. No biogeographical links were found between the floras of Isla del Coco and the Galápagos Islands. ^ The native and endemic plant diversity of Isla del Coco is threatened with habitat degradation by introduced pigs and deer, and to a lesser extent, by exotic plant species. The IUCN Red List and RAREplants criteria were used to assess the extinction threat for the 37 endemic plant taxa found on the island. All of the endemic species are considered threatened with extinction at the Critically Endangered (CR) by the IUCN criteria or either CR or Endangered (EN) using RAREplants methodology. ^
Resumo:
Phylogenetic analyses were performed on six genera and 46 species of the Neotropical palm tribe Geonomeae. The analyses were based on two low copy nuclear DNA sequences from the genes encoding phosphoribulokinase and RNA polymerase II. The basal node of the tribe was polytomous. Pholidostachys formed a monophyletic group. The currently accepted genera Calyptronoma and Calyptrogyne formed a well-supported clade with Calyptronoma resolved as paraphyletic to Calyptrogyne. Geonoma formed a strongly supported monophyletic group consisting of two main clades. ^ An evaluation of the genetic distinctness between Geonoma macrostachys varieties at a local and regional scale using inter-simple sequence repeat (ISSR) markers was performed. Clustering, ordination, and AMOVA suggested a lack of genetic distinctness between varieties at the regional level. A hierarchical AMOVA revealed that the genetic diversity mainly lies among the four localities sampled. A significant genetic differentiation between sympatric varieties occurred in one locality only. The current taxonomy of G. macrostachys, which recognizes only one species, was therefore supported. ^ The preferred habitat of sympatric G. macrostachys varieties with respect to edaphic, topographic, and light factors in three Peruvian lowland forests was studied. The two varieties were mostly encountered in different physiographically defined habitats, with variety acaulis occurring more often in floodplain forest and variety macrostachys in the tierra firme. Comparison of means tests revealed that nine to eleven of the 16 environmental variables were significantly different between varieties. Edaphic factors, mainly soil texture and K content, were better contributors than light conditions to distinguish the habitats occupied by the two varieties in all three study sites. It is concluded that habitat differentiation plays a role in the coexistence of these closely related species taxa. ^
Resumo:
Habitat loss and fragmentation have been implicated as driving forces behind recent waves of extinction. The regional landscape where this study occurred is a mosaic of forest and grassland, and therefore provides an ideal system with which to investigate the implications of habitat patchiness for the distribution and ecology of organisms. Here I describe patterns of amphibian and reptile distribution among and within habitats at the study site, investigate associations between habitat and community structure, describe nested subset patterns on forest islands, and quantify the relationship between body size and density across ecological scales and taxonomic groups. ^ Species richness did not vary across habitats, between forest island isolation classes or between island edges and cores. In contrast, species composition varied at all three ecological scales, reflecting differences in the distribution of both forest and open-habitat affiliated species. Species composition was associated with multivariate habitat profiles, with differences occurring along the isolation gradient of forest islands rather than the area gradient. The relationship between species composition and habitat was stronger for amphibians than for reptiles, a pattern that may be ascribed to physiological differences between the two groups. Analysis of nested subset pattern of community structure indicated that species composition of islands is nested as a function of isolation. Four species whose distribution on forest islands seems to be dispersal-limited drive the relationship between nestedness and isolation. Although there were several examples of shifts in body size across spatial scales and taxonomic groups, body size was not associated with density as predicted by theory, which may reflect differences between real and habitat islands, or differential responses of poikilothermic vertebrates to changes in density relative to homeotherms. ^ Taken together, the strongest result to emerge from this research is the importance of isolation, rather than area, on community structure in this system. Much evidence suggested that different ecological groups of species show distinct patterns of distribution both within and among habitat types. This suggests that species distributions at this site are not the result of 'neutral' processes at the community level, but rather reflect fundamental differences in the ecology of component species. ^
Resumo:
The subtropical hardwood forests of southern Florida are formed by 120 frost-sensitive, broadleaved angiosperm species that range throughout the Caribbean. Previous work on a series of small sized forest component patches of a 20 km2, forest preserve in northern Key Largo indicate that a shift in species composition was associated with a 100 year forest developmental sequence, and this shift was associated with an increasingly evergreen canopy. This document investigates the underlying differences of the biology of trees that live in this habitat, and is specifically focused on the impact of leaf morphology on changing nutrient cycling patterns. Measurements of the area, thickness, dry mass, nutrient content and longevity of several leaves from 3-4 individuals of ten species were conducted in combination with a two-year leaf litter collection and nutrient analysis to determine that species with thicker, denser leaves cycled scarce nutrients up to 2-3 times more efficiently than thin leaved tree species, and the leaf thickness/density index predicts role in forest development in a parallel direction as the index predicts nutrient cycling efficiency. A three year set of observations on the relative abundance of new leaves, flowers and fruits of the same tree species provides an opportunity to evaluate the consequences the leaf morphology/nutrient cycling/forest development relationship to forest habitat quality. Results of the three documents support a mechanistic link between forest development and nutrient cycling, and suggests that older forests are likely to be better habitats based on the availability of valuable forest products like new leaves, flowers, and fruits throughout the year.
Resumo:
Lepidocaryum tenue Mart. (Arecaceae) is a small, understory palm of terra firme forests of the western and central Amazon basin. Known as irapai, it is used for roof thatch by Amazonian peoples who collect its leaves from the wild and generate income from its fronds and articles fabricated from them. Increasing demand has caused local concern that populations are declining. Cultivation attempts have been unsuccessful. The purpose of this study was to investigate market conditions and quantify population dynamics and demographic responses of harvested and unharvested irapai growing near Iquitos, Peru. ^ Ethnobotanical research included participant surveys to determine movement of thatch tiles, called crisnejas, through Moronacocha Port. I also conducted a seed germination trial, and for four years studied five populations growing in communities with similar topography and soils but different land tenure and management strategies. Stage, survival, leaf production, and reproductive transitions were used to calculate ramet demographic rates and develop population projection matrices. ^ Weavers made an average of 20–30 crisnejas per day (90–130 leaves each), and earned US$0.09 to 0.70 each (US$1.80 to 21.00 per day). Average crisnejas per month sold per vendor was 2,955 with a profit range of US$0.05 to 0.32 per crisneja. Wholesalers worked with capital outlay from US$100 to 400, and an estimated ten to twenty vendors could be found at a given time. Consumers paid between US$0.23 to 1.20 per crisneja. Although differences in demographic rates by location existed, most were not significant enough to attribute to management. ^ After 60 months, mean seed germination rate was 19.5% in all media (37.9% in peat). Seedling survival was less than two percent after twelve months. Annual palm mortality was three percent, and occurred disproportionately in small (<50 cm) palms. Small palms grew more in height. Unharvested palms grew less than harvested palms. Large palms (≥50 cm) produced more leaves, were more likely to reproduce, and collectors harvested them more frequently. Reproductive potentials (sexual and asexual) were low. Population growth rates were greater than or not significantly different from 1.0, indicating populations maintained or increased in size. Current levels of irapai harvest appear sustainable. DNA analysis of stems and recruits is recommended to understand population composition and stage-specific asexual fecundity. ^
Resumo:
In this study three aspects of sexual reproduction in Everglades plants were examined to more clearly understand seed dispersal and the allocation of resources to sexual reproduction—spatial dispersal process, temporal dispersal of seeds (seedbank), and germination patterns in the dominant species, sawgrass (Cladium jamaicense). Community assembly rules for fruit dispersal were deduced by analysis of functional traits associated with this process. Seedbank ecology was investigated by monitoring emergence of germinants from sawgrass soil samples held under varying water depths to determine the fate of dispersed seeds. Fine-scale study of sawgrass fruits yielded information on contributions to variation in sexually produced propagules in this species, which primarily reproduces vegetatively. It was hypothesized that Everglades plants possess a set of functional traits that enhance diaspore dispersal. To test this, 14 traits were evaluated among 51 species by factor analysis. The factorial plot of this analysis generated groups of related traits, with four suites of traits forming dispersal syndromes. Hydrochory traits were categorized by buoyancy and appendages enhancing buoyancy. Anemochory traits were categorized by diaspore size and appendages enhancing air movement. Epizoochory traits were categorized by diaspore size, buoyancy, and appendages allowing for attachment. Endozoochory traits were categorized by diaspore size, buoyancy, and appendages aiding diaspore presentation. These patterns/trends of functional trait organization also represent dispersal community assembly rules. Seeds dispersed by hydrochory were hypothesized to be caught most often in the edge of the north side of sawgrass patches. Patterns of germination and dispersal mode of all hydrochorous macrophytes with propagules in the seedbank were elucidated by germination analysis from 90 soil samples collected from 10 sawgrass patches. Mean site seed density was 486 seeds/m2 from 13 species. Most seeds collected at the north side of patches and significantly in the outer one meter of the patch edge (p = 0.013). Sawgrass seed germination was hypothesized to vary by site, among individual plants, and within different locations of a plant’s infructescence. An analysis of sawgrass fruits with nested ANOVAs found that collection site and interaction of site x individual plant significantly affect germination ability, seed viability, and fruit size (p ≤ 0.050). Fruit location within a plant’s infructescence did not significantly affect germination. As for allocation of resources to sexual reproduction, only 17.9% of sawgrass seeds germinated and only 4.8% of ungerminated seeds with fleshy endosperm were presumed viable, but dormant. Collectively, only 22% of all sawgrass seeds produced were viable.
Resumo:
The distinctive karstic, freshwater wetlands of the northern Caribbean and Central American region support the prolific growth of calcite-rich periphyton mats. Aside from the Everglades, very little research has been conducted in these karstic wetlands, which are increasingly threatened by eutrophication. This study sought to (i) test the hypothesis that water depth and periphyton total phosphorus (TP) content are both drivers of periphyton biomass in karstic wetland habitats in Belize, Mexico and Jamaica, (ii) provide a taxonomic inventory of the periphytic diatom species in these wetlands and (iii) examine the relationship between periphyton mat TP concentration and diatom assemblage at Everglades and Caribbean locations. ^ Periphyton biomass, nutrient and diatom assemblage data were generated from periphyton mat samples collected from shallow, marl-based wetlands in Belize, Mexico and Jamaica. These data were compared to a larger dataset collected from comparable sites within Everglades National Park. A diatom taxonomic inventory was conducted on the Caribbean samples and a combination of ordination and weighted-averaging modeling techniques were used to compare relationships between periphyton TP concentration, periphyton biomass and diatom assemblage composition among the locations. ^ Within the Everglades, periphyton biomass showed a negative correlation with water depth and mat TP, while periphyton mat percent organic content was positively correlated with these two variables. These patterns were also exhibited within the Belize, Mexico and Jamaica locations, suggesting that water depth and periphyton TP content are both drivers of periphyton biomass in karstic wetland systems within the northern Caribbean region. ^ A total of 146 diatom species representing 39 genera were recorded from the three Caribbean locations, including a distinct core group of species that may be endemic to this habitat type. Weighted averaging models were produced that effectively predicted mat TP concentration from diatom assemblages for both Everglades (R2=0.56) and Caribbean (R2=0.85) locations. There were, however, significant differences among Everglades and Caribbean locations with respect to species TP optima and indicator species. This suggests that although diatoms are effective indicators of water quality in these wetlands, differences in species response to water quality changes can reduce the predictive power of these indices when applied across systems. ^
Resumo:
Worldwide declines in populations of large elasmobranchs and the potential cascading effects on marine ecosystems have garnered considerable attention. Far less appreciated are the potential ecological impacts of changes in abundances of small to medium bodied elasmobranchs mesopredators. Crucial to elucidating the role of these elasmobranchs is an understanding of their habitat use and foraging ecology in pristine conditions. I investigated the trophic interactions and factors driving spatiotemporal variation in abundances of elasmobranch mesopredators in the relatively pristine ecosystem of Shark Bay, Australia. First, I describe the species composition and seasonal habitat use patterns of elasmobranch mesopredator on the sandflats of Shark Bay. Juvenile batoids dominated this diverse community and were extremely abundant in nearshore microhabitats during the warm season. Stomach content analysis and stable isotopic analysis revealed that there is a large degree of dietary overlap between common batoid species. Crustaceans, which tend to be found in seagrass habitats, dominated diets. Despite isotopic differences between many species, overlap in isotopic niche space was high and there was some degree of individual specialization. I then, investigated the importance of abiotic (temperature and water depth) and biotic (prey and predator abundance) factors in shaping batoid habitat use. Batoids were most abundant and tended to rest in shallow nearshore waters when temperatures were high. This pattern coincides with periods of large shark abundance suggesting batoids were seeking refuge from predators rather than selecting optimal temperatures. Finally, I used acoustic telemetry to examine batoid residency and diel use of the sandflats. Individual batoids were present on the sandflats during both the warm and cold seasons and throughout the diel cycle, suggesting lower sandflat densities during the cold season were a result of habitat shifts rather than migration out of Shark Bay. Combined, habitat use and dietary results suggest that batoids have the potential to seasonally impact sandflat dynamics through their presence, although foraging may be limited on the sandflats. Interestingly, my results suggest that elasmobranch mesopredators in pristine ecosystems probably are not regulated by food supply and their habitat use patterns and perhaps ecosystem impacts may be influenced by their predators.
Resumo:
The importance of resource supply and herbivory in driving competitive interactions among species has been an important but contentious issue within ecology. These variables exhibit different effects on species competition when manipulated in isolation but interact when manipulated together. I tested the direct and interactive effects of nutrient addition and simulated grazing (clipping) on the competitive performance of primary producers and community structure of a seagrass bed in South Florida. One square meter experimental plots were established in a mixed seagrass meadow from August 2007 to July 2009. The experiment was a 3 x 3 factorial experiment: 3 fertility treatments: control, medium (2.4 mg N d−1 and 80 µg P day −1) and high (4.8 mg N d−1 and 160 µg P day−1) x 3 clipping intensities (0, 25% and 50 % biomass removal (G)) x 5 replicates for each treatment = 45 plots). Nutrient additions and simulated grazing were done every two months. Fertilization and simulated grazing decreased sexual reproduction in S. filiforme. Fertilization increased competitive dominance within the primary producers while simulated grazing counteracted this effect by removal of the dominant species. Fertilization ameliorated the negative impacts of simulated grazing while simulated grazing prevented competitive exclusion in the fertilized plots. Nutrient addition and simulated grazing both exerted strong control on plant performance and community structure. Neither bottom up nor top down influences was eliminated in treatments where both factors where present. The effects of fertilization on plant performance were marked under all clipping intensities indicating that the system is regulated by nutrient availability both in the presence or absence of grazers. Clipping effects were strong under both fertilized and unfertilized conditions indicating that the seagrass bed can be simultaneously under top-down control by grazers.