970 resultados para Biodiversity monitoring
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The polychaetes assemblage structure was used in order to investigate taxonomic sufficiency in a heavily polluted tropical bay. Species abundance was aggregated into progressively higher taxa matrices (genus, family, order) and was analyzed using univariate and multivariate techniques. Polychaetes distribution in Guanabara Bay (GB) was in accordance with a pollution gradient, probably ruled by the organic enrichment, consequent effects of hypoxia and altered redox conditions coupled with prevailing patterns of circulation. Within the sectors of GB, an increasing gradient in species richness and occurrence was observed, ranging from the azoic and impoverished stations in the inner sector to a well-structured community in terms of species composition and abundance inhabiting the outer sector. Multivariate statistical analysis showed similar results when species were aggregated into genera and families, while greater difference occurred at coarser taxonomic identification (order). The literature about taxonomic sufficiency has demonstrated that faunal patterns at different taxonomic levels tend to become similar with increased pollution. In GB, an analysis carried out solely at family level is perfectly adequate to describe the environmental gradient, considered a useful tool for a quick environmental assessment. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A subset of forest management techniques, termed ecological forestry, have been developed in order to produce timber and maintain the ecological integrity of forest communities through practices that more closely mirror natural disturbance regimes. Even though alternative methods have been described and tested, these approaches still need to be established and analyzed in a variety of geographic regions in order to calibrate and measure effectiveness across different forest types. The primary objective of this research project was to assess whether group selection combined with legacy-tree retention could enhance mid-tolerant tree recruitment in a late-successional northern hardwood forest. In order to evaluate a novel alternative regeneration technique, 49 group-selection openings in three size classes were created in 2003 with a biological legacy tree retained in the center of each opening. Twenty reference sites, managed using single-tree selection, were also analyzed for comparison. The specific goals of the project were to: 1) determine the fate and persistence of the openings and legacy trees 2) assess the understory response of the group-selection openings versus the single-tree selection reference sites, and 3) evaluate the spatial patterns of yellow birch (Betula alleghaniensis Britt.) and eastern hemlock (Tsuga canadensis (L.) Carr.) in the group-selection openings. The results from 8-9 years post-study implementation and the changes that have occurred between 2004/5 and 2011/12 are discussed. The alternative regeneration technique developed and assessed in this study has the potential to enrich biodiversity in a range of forest types. Projected group-selection opening persistence rates ranged from 41-91 years. Openings from 500-1500 m2 are predicted to persist long enough for mid-tolerant tree recruitment. The legacy trees responded well to release and experienced a low mortality rate. Yellow birch (the primary shade mid-tolerant tree in the study area) densities increased with opening size. Maples surpassed all other species in abundance. In the sapling layer, sugar maple (Acer saccharum Marsh.) was 2 to over 300 times more abundant in the group-selection openings and 2 to 3 times more abundant in the references sites than all other species present. Red maple (Acer rubrum L.) was the second most abundant species present in the openings and reference sites. Spatial patterns of yellow birch and eastern hemlock in the openings were mostly aggregated. The southern edges of the largest openings contained the highest magnitude of yellow birch and eastern hemlock per unit area. Continued monitoring and additional treatments will likely be necessary in order to ensure underrepresented species successfully reach maturity.
Resumo:
Biodiversity, a multidimensional property of natural systems, is difficult to quantify partly because of the multitude of indices proposed for this purpose. Indices aim to describe general properties of communities that allow us to compare different regions, taxa, and trophic levels. Therefore, they are of fundamental importance for environmental monitoring and conservation, although there is no consensus about which indices are more appropriate and informative. We tested several common diversity indices in a range of simple to complex statistical analyses in order to determine whether some were better suited for certain analyses than others. We used data collected around the focal plant Plantago lanceolata on 60 temperate grassland plots embedded in an agricultural landscape to explore relationships between the common diversity indices of species richness (S), Shannon's diversity (H'), Simpson's diversity (D-1), Simpson's dominance (D-2), Simpson's evenness (E), and Berger-Parker dominance (BP). We calculated each of these indices for herbaceous plants, arbuscular mycorrhizal fungi, aboveground arthropods, belowground insect larvae, and P.lanceolata molecular and chemical diversity. Including these trait-based measures of diversity allowed us to test whether or not they behaved similarly to the better studied species diversity. We used path analysis to determine whether compound indices detected more relationships between diversities of different organisms and traits than more basic indices. In the path models, more paths were significant when using H', even though all models except that with E were equally reliable. This demonstrates that while common diversity indices may appear interchangeable in simple analyses, when considering complex interactions, the choice of index can profoundly alter the interpretation of results. Data mining in order to identify the index producing the most significant results should be avoided, but simultaneously considering analyses using multiple indices can provide greater insight into the interactions in a system.
Resumo:
Due to its extraordinary biodiversity and rapid deforestation, north-eastern Madagascar is a conservation hotspot of global importance. Reducing shifting cultivation is a high priority for policy-makers and conservationists; however, spatially explicit evidence of shifting cultivation is lacking due to the difficulty of mapping it with common remote sensing methods. To overcome this challenge, we adopted a landscape mosaic approach to assess the changes between natural forests, shifting cultivation and permanent cultivation systems at the regional level from 1995 to 2011. Our study confirmed that shifting cultivation is still being used to produce subsistence rice throughout the region, but there is a trend of intensification away from shifting cultivation towards permanent rice production, especially near protected areas. While large continuous forest exists today only in the core zones of protected areas, the agricultural matrix is still dominated by a dense cover of tree crops and smaller forest fragments. We believe that this evidence makes a crucial contribution to the development of interventions to prevent further conversion of forest to agricultural land while improving local land users' well-being.
Resumo:
Tayrona National Natural Park (TNNP; 11°17' - 11°22' N and 73°53' - 74°12' W) is a hotspot of coral reef biodiversity in the Colombian Caribbean, located between the city of Santa Marta (>455,000 inhabitants) and several smaller river mouths (Rio Piedras, Mendihuaca, Guachaca). The region experiences a strong seasonal variation in physical parameters (temperature, salinity, wind, and water currents) due to alternating dry seasons with coastal upwelling and rainy seasons. Here, a range of water quality parameters relevant for coral reef functioning is provided. Water quality was measured directly above local coral reefs (~10 m water depth) by a monthly monitoring for up to 25 months in the four TNNP bays (Chengue, Gayraca, Neguanje, and Cinto) and at sites with different degree of exposition to winds, waves and water currents (exposed vs. sheltered sites) within each bay. The water quality parameters include: inorganic nutrient (nitrate, nitrite and soluble reactive phosphorus), chlorophyll a, particulate organic carbon and nitrogen concentrations (with a replication of n=3) as well as oxygen availability, biological oxygen demand, seawater pH, and water clarity (with a replication of n=4). This is by far the most comprehensive coral reefs water quality dataset for the region. A detailed description of the methods can be found within the referenced publications.
Resumo:
"Version 9/18/96" and "Version 9/19/96" on student manual and "September 1996" on teacher guide.
Resumo:
In the present paper, we have provided an initial assessment of the current and future threats to biodiversity posed by introduced mammals (predators and herbivores) inhabiting the Australian rangelands, exploring trends in populations and options for management. Notably, rabbits have declined in recent years in the wake of rabbit haemorrhagic disease, populations of feral camels have increased dramatically and foxes appear to have moved northwards, thereby threatening native fauna within an expanded range. Following on, we developed a framework for monitoring the impacts of introduced mammals in the Australian rangelands. In doing so, we considered the key issues that needed to be considered in designing a monitoring programme for this purpose and critically evaluated the role of monitoring in pest animal management. Finally we have provided a brief inventory of current best-practice methods of estimating the abundance of introduced mammal populations in the Australian rangelands with some comments on new approaches and their potential applications.
Resumo:
Demonstrating the existence of trends in monitoring data is of increasing practical importance to conservation managers wishing to preserve threatened species or reduce the impact of pest species. However, the ability to do so can be compromised if the species in question has low detectability and the true occupancy level or abundance of the species is thus obscured. Zero-inflated models that explicitly model detectability improve the ability to make sound ecological inference in such situations. In this paper we apply an occupancy model including detectability to data from the initial stages of a fox-monitoring program on the Eyre Peninsula, South Australia. We find that detectability is extremely low (< 18%) and varies according to season and the presence or absence of roadside vegetation. We show that simple methods of using monitoring data to inform management, such as plotting the raw data or performing logistic regression, fail to accurately diagnose either the status of the fox population or its trajectory over time. We use the results of the detectability model to consider how future monitoring could be redesigned to achieve efficiency gains. A wide range of monitoring programs could benefit from similar analyses, as part of an active adaptive approach to improving monitoring and management.
Resumo:
Species extinctions and the deterioration of other biodiversity features worldwide have led to the adoption of systematic conservation planning in many regions of the world. As a consequence, various software tools for conservation planning have been developed over the past twenty years. These, tools implement algorithms designed to identify conservation area networks for the representation and persistence of biodiversity features. Budgetary, ethical, and other sociopolitical constraints dictate that the prioritized sites represent biodiversity with minimum impact on human interests. Planning tools are typically also used to satisfy these criteria. This chapter reviews both the concepts and technical choices that underlie the development of these tools. Conservation planning problems can be formulated as optimization problems, and we evaluate the suitability of different algorithms for their solution. Finally, we also review some key issues associated with the use of these tools, such as computational efficiency, the effectiveness of taxa and abiotic parameters at choosing surrogates for biodiversity, the process of setting explicit targets of representation for biodiversity surrogates, and
Resumo:
Effective detection of population trend is crucial for managing threatened species. Little theory exists, however, to assist managers in choosing the most cost-effective monitoring techniques for diagnosing trend. We present a framework for determining the optimal monitoring strategy by simulating a manager collecting data on a declining species, the Chestnut-rumped Hylacola (Hylacola pyrrhopygia parkeri), to determine whether the species should be listed under the IUCN (World Conservation Union) Red List. We compared the efficiencies of two strategies for detecting trend, abundance, and presence-absence surveys, underfinancial constraints. One might expect the abundance surveys to be superior under all circumstances because more information is collected at each site. Nevertheless, the presence-absence data can be collected at more sites because the surveyor is not obliged to spend a fixed amount of time at each site. The optimal strategy for monitoring was very dependent on the budget available. Under some circumstances, presence-absence surveys outperformed abundance surveys for diagnosing the IUCN Red List categories cost-effectively. Abundance surveys were best if the species was expected to be recorded more than 16 times/year; otherwise, presence-absence surveys were best. The relationship between the strategies we investigated is likely to be relevant for many comparisons of presence-absence or abundance data. Managers of any cryptic or low-density species who hope to maximize their success of estimating trend should find an application for our results.
Resumo:
The International Long-Term Ecological Research (ILTER) network comprises > 600 scientific groups conducting site-based research within 40 countries. Its mission includes improving the understanding of global ecosystems and informs solutions to current and future environmental problems at the global scales. The ILTER network covers a wide range of social-ecological conditions and is aligned with the Programme on Ecosystem Change and Society (PECS) goals and approach. Our aim is to examine and develop the conceptual basis for proposed collaboration between ILTER and PECS. We describe how a coordinated effort of several contrasting LTER site-based research groups contributes to the understanding of how policies and technologies drive either toward or away from the sustainable delivery of ecosystem services. This effort is based on three tenets: transdisciplinary research; cross-scale interactions and subsequent dynamics; and an ecological stewardship orientation. The overarching goal is to design management practices taking into account trade-offs between using and conserving ecosystems toward more sustainable solutions. To that end, we propose a conceptual approach linking ecosystem integrity, ecosystem services, and stakeholder well-being, and as a way to analyze trade-offs among ecosystem services inherent in diverse management options. We also outline our methodological approach that includes: (i) monitoring and synthesis activities following spatial and temporal trends and changes on each site and by documenting cross-scale interactions; (ii) developing analytical tools for integration; (iii) promoting trans-site comparison; and (iv) developing conceptual tools to design adequate policies and management interventions to deal with trade-offs. Finally, we highlight the heterogeneity in the social-ecological setting encountered in a subset of 15 ILTER sites. These study cases are diverse enough to provide a broad cross-section of contrasting ecosystems with different policy and management drivers of ecosystem conversion; distinct trends of biodiversity change; different stakeholders’ preferences for ecosystem services; and diverse components of well-being issues.
Resumo:
Montados are presently facing the threat of either abandonment or intensification, and livestock overgrazing has been suspected of contributing to reduced natural regeneration and biodiversity. However, reliable data are to our knowledge, lacking. To avoid potential risks of overgrazing, an adaptive and efficient management is essential. In the present paper we review the main sources of complexity for grazing management linked with interactions among pasture, livestock and human decisions. We describe the overgrazing risk in montados and favour grazing pressure over stocking rate, as a key indicator for monitoring changes and support management decisions. We suggest the use of presently available imaging and communication technologies for assessing pasture dynamics and livestock spatial location. This simple and effective tools used for monitoring the grazing pressure, could provide an efficient day-to-day aid for farm managers’ operational use and also for rangeland research through data collection and analysis.