999 resultados para Biodiesel process
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Simulação computacional da extração líquido-líquido fracionada de enzimas para produção de biodiesel
Resumo:
Liquid-liquid extraction is utilized for purification of biomolecules by Aqueous Biphasic Systems (ABS), since this process does not damage the biotechnological potential of these compounds. In this work, using the free software Scilab®, the fractionated liquid-liquid extraction was studied aiming a lipase (target enzyme) partition in a water + PEG + DEX system. Lisozime was considered as contaminant. As computer simulations has been extensively used when a first estimation of technical feasibility of process is desired, this work demonstred that the system is viable for recovery the 80 % till 90 % the target enzyme, but should be noted that the trial aimed only the fractionation of the enzyme target of a contaminant, not its concentration, which should be done by another process.
Resumo:
In this study, use was made of tucumã cake, in natura (TCN) and thermally treated (TCT), as potential alternative adsorbents for the adsorption of cationic and anionic dyes. The effects of the parameters: contact time, adsorbent: adsorbate mass ratio, and initial concentration of dye were analyzed. The adsorption isotherms were established from optimized adsorption parameters. The best conditions for adsorption were: equilibrium time of 7 h, concentration of 25 mg L 1 and ratio of 1:200 for the methylene blue dye; and pH 6.5, concentration of 25 mg L 1 and ratio of 1:200 for the congo red dye. The adsorption process was best represented by the Dubinin–Radushkevich and Sips isotherms. The kinetics of adsorption of the dyes were best described by the pseudo-second-order kinetic and Elovich models. TCT showed the best maximum adsorption capacity (Qm) for the methylene blue dye (63.92 mg g 1 ).
Resumo:
The substitution of diesel by biodiesel meets the current scenario to increase the consumption of alternative energy sources promoting sustainable development of a country. However, the production of biodiesel concurrently generates the formation of glycerine in the process is a by-product. The main application of glycerine is in the food industry, cosmetics, soaps, pharmaceuticals, among others, but these segments are not capable of absorbing the generated volume of glycerine, whereas the total volume of the biodiesel produced about 10% correspond to glycerine. Glycerine obtained from the transesterification reaction (necessary for production of biodiesel) triglycerides and alcohol contains certain impurities such as water, salts, esters, alcohol, and residual oil, which decrease the value. Thus, the purification process or the direct use of glycerine become essential to make it competitive biodiesel production process. This work aims to evaluate the different processes of purification and the use of glycerine obtained as by-product in the production of biodiesel. The research was theoretical, based on technical articles and theses published on this subject, and from these databases was established a summary of the most important processes
Resumo:
There is a great global concern about the depletion and the high cost of fossil fuel reserves exploitation, more than ever, it is necessary to make a profound study and take advantage of alternative sources that can be used as energy efficiency with an appropriate pricing and low environmental impact. Brazil, which has highlighted using alternative energy sources as the use of ethanol and, in recent years, has been encouraging the expansion of its energy matrix in which the biodiesel will have a strategic importance within the agrobusiness area. Biodiesel is a fuel that can replace the diesel, which is a petroleum derivative. It is an ester, produced in the transesterification reaction of vegetable oils and animal greases, in an alcohol with an additional catalyst, are converted into fatty acids and result in esters with glycerol as sub products. The objective of this study was to estimate the final energy balance for the process biodiesel production from oil chicken waste. The energy balance estimation was quantified in calorific value according to the energy expenditure by calorimetric bomb method. The relationship between input and output of energy was around 0.97. In a first evaluation, the procedures adopted should be improved enough, so the process can become energetic and economically viable.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this work was to investigate the effect of different feeding times (2, 4 and 6 h) and applied volumetric organic loads (4.5, 6.0 and 7.5 gCOD L-1 day(-1)) on the performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) treating effluent from biodiesel production. Polyurethane foam cubes were used as inert support in the reactor, and mixing was accomplished by recirculating the liquid phase. The effect of feeding time on reactor performance showed to be more pronounced at higher values of applied volumetric organic loads (AVOLs). Highest organic material removal efficiencies achieved at AVOL of 4.5 gCOD L-1 day(-1) were 87 % at 4-h feeding against 84 % at 2-h and 6-h feeding. At AVOL of 6.0 gCOD L-1 day(-1), highest organic material removal efficiencies achieved with 4-h and 6-h feeding were 84 %, against 71 % at 2-h feeding. At AVOL of 7.5 gCOD L-1 day(-1), organic material removal efficiency achieved with 4-h feeding was 77 %. Hence, longer feeding times favored minimization of total volatile acids concentration during the cycle as well as in the effluent, guaranteeing process stability and safety.
Resumo:
Optimal conditions for the microwave-assisted enzymatic synthesis of biodiesel have been developed by a full 2(2) factorial design leading to a set of seven runs with different combinations of molar ratio and temperature. The main goal was to reduce the reaction time preliminarily established by a process of conventional heating. Reactions yielding biodiesel, in which beef tallow and ethanol used as raw materials were catalyzed by lipase from Burkholderia cepacia immobilized on silica-PVA and microwave irradiations within the range of 8-15 W were performed to reach the reaction temperature. Under optimized conditions (1:6 molar ratio of beef tallow to ethanol molar ratio at 50A degrees C) almost total conversion of the fatty acid presented in the original beef tallow was converted into ethyl esters in a reaction that required 8 h, i.e., a productivity of about 92 mg ethyl esters g(-1) h(-1). This represents an increase of sixfold for the process carried out under conventional heating. In general, the process promises low energy demand and higher biodiesel productivity. The microwave assistance speeds up the enzyme catalyzed reactions, decreases the destructive effects on the enzyme of the operational conditions such as, higher temperature, stability, and specificity to its substrate, and allows the entire reaction medium to be heated uniformly.
Resumo:
On January 1 2008, Brazil included yet another element into its energy matrix: biodiesel. The predominant biodiesel production process involves a phase of transesterification that yields glycerol as a by-product. The use of this glycerol is limited since it is considered an unrefined raw material that must be refined for its various types of use. Several studies have addressed identification of possible uses for unrefined glycerol. Given the diversity of uses, an overview is necessary. The purpose of this work is to present alternatives currently being considered for the use of unrefined glycerol as a by-product of biodiesel production, aiming to contribute to the sustainable consolidation of the biofuel market. Exploratory research was carried out to identify these viable alternatives for the use of this by-product. The possibilities include the production of chemical products, fuel additives, production of hydrogen, development of fuel cells, ethanol or methanol production, animal feed, co-digestion and co-gasification, and waste treatment among others. The present research reveals that there are promising possibilities for the use of unrefined glycerol, which may help consolidate the sustainability of the biofuel market. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Ten yeast strains were evaluated concerning their capabilities to assimilate biodiesel-derived glycerol in batch cultivation. The influence of glycerol concentration, temperature, pH and yeast extract concentration on biomass production was studied for the yeast selected. Further, the effect of agitation on glycerol utilization by the yeast Hansenula anomala was also studied. The yeast H. anomala CCT 2648 showed the highest biomass yield (0.30 g g(-1)) and productivity (0.19 g L-1 h(-1)). Citric acid, succinic acid, acetic acid and ethanol were found as the main metabolites produced. The increase of yeast extract concentration from 1 to 3 g L-1 resulted in high biomass production. The highest biomass concentration (21 g L-1), yield (0.45 g g(-1)) and productivity (0.31 g L-1 h(-1)), as well as ribonucleotide production (13.13 mg g(-1)), were observed at 700 rpm and 0.5 vvm. These results demonstrated that glycerol from biodiesel production process showed to be a feasible substrate for producing biomass and ribonucleotides by yeast species.
Resumo:
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) and 317 kW (425 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within an aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). The tests conducted with the engine rated at 365 hp used a 2007 DOC and CPF. The tests conducted with the engine rated at 425 hp used a 2010 DOC and 2007 CPF. Understanding the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Modeling the passive oxidation of accumulated PM in the CPF will lead to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine, and when the engine is operated at a higher power rating. A test procedure developed by Hutton et al. [1, 2] was modified to improve the ability to model the experimental data and provide additional insight into passively oxidized PM in a partially regenerated CPF. A test procedure was developed to allow PM oxidation rates by NO2 to be determined from engine test cell data. An experimental matrix consisting of CPF inlet temperatures from 250 to 450 °C with varying NOX/PM from 25 to 583and NO2/PM ratios from 5 to 240 was used. SME biodiesel was volumetrically blended with ULSD in 10% (B10) and 20% (B20) portions. This blended fuel was then used to evaluate the effect of biodiesel on passive oxidation rates. Four tests were performed with B10 and four tests with B20. Gathering data to determine the effect of fuel type (ULSD and biodiesel blends) on PM oxidation is the primary goal. The engine used for this testing was then configured to a higher power rating and one of the tests planned was performed. Additional testing is scheduled to take place with ULSD fuel to determine the affect the engine rating has on the PM oxidation. The experimental reaction rates during passive oxidation varied based upon the average CPF temperature, NO2 concentrations, and the NOX/PM ratios for each engine rating and with all fuels. The data analysis requires a high fidelity model that includes NO2 and thermal oxidation mechanisms and back diffusion to determine the details of the PM oxidation process.
Resumo:
PAHs are pollutants of concern since they are known carcinogenic compounds. Their occurrence is mainly related to combustion or pyrolysis of organic matter such as fossil fuels. In the current scenario where biofuels are growingly important, it is also necessary to characterize PAH emissions due to their combustion. There are a number of works concerning PAH emissions from biodiesel combustion in Diesel engines, however, there are few regarding the difference between them depending on the feedstock and type of alcohol used in the transesterification. The authors have processed and characterized biodiesel from several feedstocks (Le. tallow, palm, rapeseed, soy-bean, coconut, peanut and linseed oils) to obtain FAME and FAEE and they have developed a method to measure the PAHs originated during their combustion in a bomb calorimeter. The tests have been carried out under different oxygen pressure conditions, and samples have been c1eaned from the bomb after each one of these tests. The samples have been prepared for GC-MS analysis, where PAH quantities among some other combustion products have been assessed. This work shows statistical relations obtained between the measured amounts of 18 PAHs of concern and the composition (oil and type of alcohol) used to obtain the biodiesel, and also the oxygen pressure during combustion.