998 resultados para Binding-Kinetics
Resumo:
We have studied the kinetics of transcriptional initiation and activation at the malT and malTp1 promoters of Escherichia coli using UV laser footprinting. Contrary to previous studies and because of the very rapid signal acquisition by this technique, we can obtain structural information about true reaction intermediates of transcription initiation. The consequences of adding a transcriptional activator, the cAMP receptor protein/cAMP complex (CRP), are monitored in real time, permitting us to assign specific interactions to the activation of discrete steps in transcription initiation. Direct protein–protein contacts between CRP and the RNA polymerase appeared very rapidly, followed by DNA melting around the −10 hexamer. CRP slightly increased the rate of this isomerization reaction but, more importantly, favored the establishment of additional contacts between the DNA upstream of the CRP binding site and RNA polymerase subsequent to open complex formation. These contacts make a major contribution to transcriptional activation by stabilizing open forms of the promoter complex, thereby indirectly accelerating promoter escape. The ensemble of the kinetic, structural signals demonstrated directly that CRP exerts most of its activating effects on the late stages of transcriptional initiation at the malT promoter.
Resumo:
Mutation of the highly conserved leucine residue (Leu-247) converts 5-hydroxytryptamine (5HT) from an antagonist into an agonist of neuronal homomeric α7 nicotinic acetylcholine receptor expressed in Xenopus oocytes. We show here that acetylcholine (AcCho) activates two classes of single channels with conductances of 44 pS and 58 pS, similar to those activated by 5HT. However, the mean open time of AcCho-gated ion channels (11 ms) is briefer than that of 5HT-gated ion channels (18 ms). Furthermore, whereas the open time of AcCho channels lengthens with hyperpolarization, that of 5HT channels is decreased. In voltage-clamped oocytes, the apparent affinity of the α7 mutant receptor for 5HT is not modified by the presence of dihydro-β-erythroidine, which acts on the AcCho binding site in a competitive manner. This indicates a noncompetitive action of 5HT on nicotinic acetylcholine receptors. Considered together, our findings show that AcCho gates α7 mutant channels with similar conductance but with different kinetic profile than the channels gated by 5HT, suggesting that the two agonists act on different docking sites. These results will help to understand the crosstalk between cholinergic and serotonergic systems in the central nervous system.
Resumo:
The gene for the maturation protein of the single-stranded RNA coliphage MS2 is preceded by an untranslated leader of 130 nt, which folds into a cloverleaf, i.e., three stem–loop structures enclosed by a long distance interaction (LDI). This LDI prevents translation because its 3′ moiety contains the Shine–Dalgarno sequence of the maturation gene. Previously, several observations suggested that folding of the cloverleaf is kinetically delayed, providing a time window for ribosomes to access the RNA. Here we present direct evidence for this model. In vitro experiments show that ribosome binding to the maturation gene is faster than refolding of the denatured cloverleaf. This folding delay appears related to special properties of the leader sequence. We have replaced the three stem–loop structures by a single five nt loop. This change does not affect the equilibrium structure of the LDI. Nevertheless, in this construct, the folding delay has virtually disappeared, suggesting that now the RNA folds faster than ribosomes can bind. Perturbation of the cloverleaf by an insertion makes the maturation start permanently accessible. A pseudorevertant that evolved from an infectious clone carrying the insertion had overcome this defect. It showed a wild-type folding delay before closing down the maturation gene. This experiment reveals the biological significance of retarded cloverleaf formation.
Resumo:
Although odorants are known to activate olfactory receptor neurons through cAMP, the long-term effects of odorant detection are not known. Our recent findings indicate that there is also a delayed and sustained cAMP response, with kinetics sufficient to mediate long-term cellular responses. This cAMP response is mediated by cGMP through activation of adenylyl cyclase by protein kinase G (PKG). Therefore, we investigated the ability of odorants to regulate gene expression in rat olfactory epithelium. The cAMP-responsive binding protein (CREB) is a well-characterized transcription factor regulated by cAMP. We examined CREB activity in rat olfactory epithelium and olfactory receptor neurons (ORNs) after stimulation with odorants. Odorants increased levels of phosphorylated CREB in olfactory epithelium in vivo, and this increase was localized to ORNs in vitro. Incubation with 8-bromo-cGMP or sodium nitroprusside, a guanylyl cyclase activator, also increased phosphorylated CREB. In vitro, cAMP-dependent protein kinase phosphorylated CREB. In contrast, PKG failed to phosphorylate CREB directly in vitro. Our results demonstrate that the delayed odorant-induced cAMP signal activates CREB, which in turn may modulate gene expression in ORNs. In addition, cGMP indirectly affects CREB activation. This effect of cGMP on CREB activity through cAMP provides another mechanism for the modulation of CREB.
Resumo:
The reaction center (RC) from Rhodobacter sphaeroides couples light-driven electron transfer to protonation of a bound quinone acceptor molecule, QB, within the RC. The binding of Cd2+ or Zn2+ has been previously shown to inhibit the rate of reduction and protonation of QB. We report here on the metal binding site, determined by x-ray diffraction at 2.5-Å resolution, obtained from RC crystals that were soaked in the presence of the metal. The structures were refined to R factors of 23% and 24% for the Cd2+ and Zn2+ complexes, respectively. Both metals bind to the same location, coordinating to Asp-H124, His-H126, and His-H128. The rate of electron transfer from QA− to QB was measured in the Cd2+-soaked crystal and found to be the same as in solution in the presence of Cd2+. In addition to the changes in the kinetics, a structural effect of Cd2+ on Glu-H173 was observed. This residue was well resolved in the x-ray structure—i.e., ordered—with Cd2+ bound to the RC, in contrast to its disordered state in the absence of Cd2+, which suggests that the mobility of Glu-H173 plays an important role in the rate of reduction of QB. The position of the Cd2+ and Zn2+ localizes the proton entry into the RC near Asp-H124, His-H126, and His-H128. Based on the location of the metal, likely pathways of proton transfer from the aqueous surface to QB⨪ are proposed.
Resumo:
The reaction center (RC) from Rhodobacter sphaeroides converts light into chemical energy through the light induced two-electron, two-proton reduction of a bound quinone molecule QB (the secondary quinone acceptor). A unique pathway for proton transfer to the QB site had so far not been determined. To study the molecular basis for proton transfer, we investigated the effects of exogenous metal ion binding on the kinetics of the proton-assisted electron transfer kAB(2) (QA−•QB−• + H+ → QA(QBH)−, where QA is the primary quinone acceptor). Zn2+ and Cd2+ bound stoichiometrically to the RC (KD ≤ 0.5 μM) and reduced the observed value of kAB(2) 10-fold and 20-fold (pH 8.0), respectively. The bound metal changed the mechanism of the kAB(2) reaction. In native RCs, kAB(2) was previously shown to be rate-limited by electron transfer based on the dependence of kAB(2) on the driving force for electron transfer. Upon addition of Zn2+ or Cd2+, kAB(2) became approximately independent of the electron driving force, implying that the rate of proton transfer was reduced (≥ 102-fold) and has become the rate-limiting step. The lack of an effect of the metal binding on the charge recombination reaction D+•QAQB−• → DQAQB suggests that the binding site is located far (>10 Å) from QB. This hypothesis is confirmed by preliminary x-ray structure analysis. The large change in the rate of proton transfer caused by the stoichiometric binding of the metal ion shows that there is one dominant site of proton entry into the RC from which proton transfer to QB−• occurs.
Resumo:
Single-chain antibody mutants have been evolved in vitro with antigen-binding equilibrium dissociation constant Kd = 48 fM and slower dissociation kinetics (half-time > 5 days) than those for the streptavidin–biotin complex. These mutants possess the highest monovalent ligand-binding affinity yet reported for an engineered protein by over two orders of magnitude. Optimal kinetic screening of randomly mutagenized libraries of 105–107 yeast surface-displayed antibodies enabled a >1,000-fold decrease in the rate of dissociation after four cycles of affinity mutagenesis and screening. The consensus mutations are generally nonconservative by comparison with naturally occurring mouse Fv sequences and with residues that do not contact the fluorescein antigen in the wild-type complex. The existence of these mutants demonstrates that the antibody Fv architecture is not intrinsically responsible for an antigen-binding affinity ceiling during in vivo affinity maturation.
Resumo:
The RNA cleavage reaction catalyzed by the hairpin ribozyme shows biphasic kinetics, and chase experiments show that the slow phase of the reaction results from reversible substrate binding to an inactive conformational isomer. To investigate the structural basis for the heterogeneous kinetics, we have developed an enzymatic RNA modification method that selectively traps substrate bound to the inactive conformer and allows the two forms of the ribozyme-substrate complex to be separated and analyzed by using both physical and kinetic strategies. The inactive form of the complex was trapped by the addition of T4 RNA ligase to a cleavage reaction, resulting in covalent linkage of the 5′ end of the substrate to the 3′ end of the ribozyme and in selective and quantitative ablation of the slow kinetic phase of the reaction. This result indicates that the inactive form of the ribozyme-substrate complex can adopt a conformation in which helices 2 and 3 are coaxially stacked, whereas the active form does not have access to this conformation, because of a sharp bend at the helical junction that presumably is stabilized by inter-domain tertiary contacts required for catalytic activity. These results were used to improve the activity of the hairpin ribozyme by designing new interfaces between the two domains, one containing a non-nucleotidic orthobenzene linkage and the other replacing the two-way junction with a three-way junction. Each of these modified ribozymes preferentially adopts the active conformation and displays improved catalytic efficiency.
Resumo:
An in vitro assay for nucleocytoplasmic transport was established in which signal-dependent protein import is reproduced faithfully by isolated purified nuclei. The assay permits the precise quantification of import kinetics and the discrimination between translocation through the nuclear envelope and intranuclear transport. Nuclei were manually isolated from Xenopus oocytes and after manual purification incubated with a medium containing a green fluorescent transport substrate, karyopherins α2 and β1, a red fluorescent control substrate, an energy mix and, for keeping an osmotic balance, 20% (wt/vol) BSA. Import of transport substrates into the nucleus and exclusion of the control substrate were monitored simultaneously by two-color confocal microscopy. Two widely differing import substrates were used: the recombinant protein P4K [480 kDa, four nuclear localization sequences (NLSs) per P4K tetramer], and NLS-BSA (90 kDa, 15 NLSs). The measurements suggested that import, at the specific conditions used in this study, consisted of two consecutive processes: (i) the rapid equilibration of the concentration difference across the nuclear envelope, a process involving binding and translocation of substrate by the nuclear pore complex , and (ii) the dissipation of the intranuclear concentration difference by diffusion.
Resumo:
Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance.
Resumo:
The transporter associated with antigen processing (TAP) is essential for intracellular transport of protein fragments into the endoplasmic reticulum for loading of major histocompatibility complex (MHC) class I molecules. On the cell surface, these peptide–MHC complexes are monitored by cytotoxic T lymphocytes. To study the ATP hydrolysis of TAP, we developed an enrichment and reconstitution procedure, by which we fully restored TAP function in proteoliposomes. A TAP-specific ATPase activity was identified that could be stimulated by peptides and blocked by the herpes simplex virus protein ICP47. Strikingly, the peptide-binding motif of TAP directly correlates with the stimulation of the ATPase activity, demonstrating that the initial peptide-binding step is responsible for TAP selectivity. ATP hydrolysis follows Michaelis–Menten kinetics with a maximal velocity Vmax of 2 μmol/min per mg TAP, corresponding to a turnover number of approximately 5 ATP per second. This turnover rate is sufficient to account for the role of TAP in peptide loading of MHC molecules and the overall process of antigen presentation. Interestingly, sterically restricted peptides that bind but are not transported by TAP do not stimulate ATPase activity. These results point to coordinated dialogue between the peptide-binding site, the nucleotide-binding domain, and the translocation site via conformational changes within the TAP complex.
Resumo:
We analyzed the kinetics of nonphotochemical quenching of chlorophyll fluorescence (qN) in spinach (Spinacia oleracea) leaves, chloroplasts, and purified light-harvesting complexes. The characteristic biphasic pattern of fluorescence quenching in dark-adapted leaves, which was removed by preillumination, was evidence of light activation of qN, a process correlated with the de-epoxidation state of the xanthophyll cycle carotenoids. Chloroplasts isolated from dark-adapted and light-activated leaves confirmed the nature of light activation: faster and greater quenching at a subsaturating transthylakoid pH gradient. The light-harvesting chlorophyll a/b-binding complexes of photosystem II were isolated from dark-adapted and light-activated leaves. When isolated from light-activated leaves, these complexes showed an increase in the rate of quenching in vitro compared with samples prepared from dark-adapted leaves. In all cases, the quenching kinetics were fitted to a single component hyperbolic function. For leaves, chloroplasts, and light-harvesting complexes, the presence of zeaxanthin was associated with an increased rate constant for the induction of quenching. We discuss the significance of these observations in terms of the mechanism and control of qN.
Resumo:
In the current study, cellular and molecular approaches have been used to analyze the biophysical nature of T cell receptor (TCR)–peptide MHC (pMHC) interactions for two autoreactive TCRs. These two TCRs recognize the N-terminal epitope of myelin basic protein (MBP1–11) bound to the MHC class II protein, I-Au, and are associated with murine experimental autoimmune encephalomyelitis. Mice transgenic for the TCRs have been generated and characterized in other laboratories. These analyses indicate that the mice either develop encephalomyelitis spontaneously (172.10 TCR) or only if immunized with autoantigen in adjuvant (1934.4 TCR). Here, we show that the 172.10 TCR binds MBP1–11:I-Au with a 4–5-fold higher affinity than the 1934.4 TCR. Consistent with the higher affinity, 172.10 T hybridoma cells are significantly more responsive to autoantigen than 1934.4 cells. The interaction of the 172.10 TCR with cognate ligand is more entropically unfavorable than that of the 1934.4 TCR, indicating that the 172.10 TCR undergoes greater conformational rearrangements upon ligand binding. The studies therefore suggest a correlation between the strength and plasticity of a TCR–pMHC interaction and the frequency of spontaneous disease in the corresponding TCR transgenic mice. The comparative analysis of these two TCRs has implications for understanding autoreactive T cell recognition and activation.
Resumo:
Elicitins are a family of small proteins secreted by Phytophthora species that have a high degree of homology and elicit defense reactions in tobacco (Nicotiana tabacum). They display acidic or basic characteristics, the acidic elicitins being less efficient in inducing plant necrosis. In this study we compared the binding properties of four elicitins (two basic and two acidic) and early-induced signal transduction events (Ca2+ influx, extracellular medium alkalinization, and active oxygen species production). The affinity for tobacco plasma membrane-binding sites and the number of binding sites were similar for all four elicitins. Furthermore, elicitins compete with one another for binding sites, suggesting that they interact with the same receptor. The four elicitins induced Ca2+ influx, extracellular medium alkalinization, and the production of active oxygen species in tobacco cell suspensions, but the intensity and kinetics of these effects were different from one elicitin to another. As a general observation the concentrations that induce similar levels of biological activities were lower for basic elicitins (with the exception of cinnamomin-induced Ca2+ uptake). The qualitative similarity of early events induced by elicitins indicates a common transduction scheme, whereas fine signal transduction tuning is different in each elicitin.
Resumo:
The de-epoxidation of violaxanthin to antheraxanthin (Anth) and zeaxanthin (Zeax) in the xanthophyll cycle of higher plants and the generation of nonphotochemical fluorescence quenching in the antenna of photosystem II (PSII) are induced by acidification of the thylakoid lumen. Dicyclohexylcarbodiimide (DCCD) has been shown (a) to bind to lumen-exposed carboxy groups of antenna proteins and (b) to inhibit the pH-dependent fluorescence quenching. The possible influence of DCCD on the de-epoxidation reactions has been investigated in isolated pea (Pisum sativum L.) thylakoids. The Zeax formation was found to be slowed down in the presence of DCCD. The second step (Anth → Zeax) of the reaction sequence seemed to be more affected than the violaxanthin → Anth conversion. Comparative studies with antenna-depleted thylakoids from plants grown under intermittent light and with unstacked thylakoids were in agreement with the assumption that binding of DCCD to antenna proteins is probably responsible for the retarded kinetics. Analyses of the DCCD-induced alterations in different antenna subcomplexes showed that Zeax formation in the PSII antenna proteins was predominantly influenced by DCCD, whereas Zeax formation in photosystem I was nearly unaffected. Our data support the suggestion that DCCD binding to PSII antenna proteins is responsible for the observed alterations in xanthophyll conversion.