962 resultados para Binary Optical Element


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report micromodification of Eu element distribution in a silicate glass with femtosecond laser irradiation. Elemental analysis shows that the content of Eu decreased at the focal point and increased in a ring-shaped region around the focal point, which indicates migration of Eu ions has been induced by the femtosecond laser irradiation. Confocal fluorescence spectra demonstrate that the fluorescence intensity of Eu3+ ions increased by 20% in the laser-induced, Eu-enriched, ring-shaped region compared with that for nonirradiated glass. The mechanism for the laser induced change in fluorescence properties of Eu3+ has been investigated. (C) 2009 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Advanced LIGO and Virgo experiments are poised to detect gravitational waves (GWs) directly for the first time this decade. The ultimate prize will be joint observation of a compact binary merger in both gravitational and electromagnetic channels. However, GW sky locations that are uncertain by hundreds of square degrees will pose a challenge. I describe a real-time detection pipeline and a rapid Bayesian parameter estimation code that will make it possible to search promptly for optical counterparts in Advanced LIGO. Having analyzed a comprehensive population of simulated GW sources, we describe the sky localization accuracy that the GW detector network will achieve as each detector comes online and progresses toward design sensitivity. Next, in preparation for the optical search with the intermediate Palomar Transient Factory (iPTF), we have developed a unique capability to detect optical afterglows of gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Burst Monitor (GBM). Its comparable error regions offer a close parallel to the Advanced LIGO problem, but Fermi's unique access to MeV-GeV photons and its near all-sky coverage may allow us to look at optical afterglows in a relatively unexplored part of the GRB parameter space. We present the discovery and broadband follow-up observations (X-ray, UV, optical, millimeter, and radio) of eight GBM-IPTF afterglows. Two of the bursts (GRB 130702A / iPTF13bxl and GRB 140606B / iPTF14bfu) are at low redshift (z=0.145 and z = 0.384, respectively), are sub-luminous with respect to "standard" cosmological bursts, and have spectroscopically confirmed broad-line type Ic supernovae. These two bursts are possibly consistent with mildly relativistic shocks breaking out from the progenitor envelopes rather than the standard mechanism of internal shocks within an ultra-relativistic jet. On a technical level, the GBM--IPTF effort is a prototype for locating and observing optical counterparts of GW events in Advanced LIGO with the Zwicky Transient Facility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many applications in cosmology and astrophysics at millimeter wavelengths including CMB polarization, studies of galaxy clusters using the Sunyaev-Zeldovich effect (SZE), and studies of star formation at high redshift and in our local universe and our galaxy, require large-format arrays of millimeter-wave detectors. Feedhorn and phased-array antenna architectures for receiving mm-wave light present numerous advantages for control of systematics, for simultaneous coverage of both polarizations and/or multiple spectral bands, and for preserving the coherent nature of the incoming light. This enables the application of many traditional "RF" structures such as hybrids, switches, and lumped-element or microstrip band-defining filters.

Simultaneously, kinetic inductance detectors (KIDs) using high-resistivity materials like titanium nitride are an attractive sensor option for large-format arrays because they are highly multiplexable and because they can have sensitivities reaching the condition of background-limited detection. A KID is a LC resonator. Its inductance includes the geometric inductance and kinetic inductance of the inductor in the superconducting phase. A photon absorbed by the superconductor breaks a Cooper pair into normal-state electrons and perturbs its kinetic inductance, rendering it a detector of light. The responsivity of KID is given by the fractional frequency shift of the LC resonator per unit optical power.

However, coupling these types of optical reception elements to KIDs is a challenge because of the impedance mismatch between the microstrip transmission line exiting these architectures and the high resistivity of titanium nitride. Mitigating direct absorption of light through free space coupling to the inductor of KID is another challenge. We present a detailed titanium nitride KID design that addresses these challenges. The KID inductor is capacitively coupled to the microstrip in such a way as to form a lossy termination without creating an impedance mismatch. A parallel plate capacitor design mitigates direct absorption, uses hydrogenated amorphous silicon, and yields acceptable noise. We show that the optimized design can yield expected sensitivities very close to the fundamental limit for a long wavelength imager (LWCam) that covers six spectral bands from 90 to 400 GHz for SZE studies.

Excess phase (frequency) noise has been observed in KID and is very likely caused by two-level systems (TLS) in dielectric materials. The TLS hypothesis is supported by the measured dependence of the noise on resonator internal power and temperature. However, there is still a lack of a unified microscopic theory which can quantitatively model the properties of the TLS noise. In this thesis we derive the noise power spectral density due to the coupling of TLS with phonon bath based on an existing model and compare the theoretical predictions about power and temperature dependences with experimental data. We discuss the limitation of such a model and propose the direction for future study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuzzy-reasoning theory is widely used in industrial control. Mathematical morphology is a powerful tool to perform image processing. We apply fuzzy-reasoning theory to morphology and suggest a scheme of fuzzy-reasoning morphology, including fuzzy-reasoning dilation and erosion functions. These functions retain more fine details than the corresponding conventional morphological operators with the same structuring element. An optical implementation has been developed with area-coding and thresholding methods. (C) 1997 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A compact two-step modified-signed-digit arithmetic-logic array processor is proposed. When the reference digits are programmed, both addition and subtraction can be performed by the same binary logic operations regardless of the sign of the input digits. The optical implementation and experimental demonstration with an electron-trapping device are shown. Each digit is encoded by a single pixel, and no polarization is included. Any combinational logic can be easily performed without optoelectronic and electro-optic conversions of the intermediate results. The system is compact, general purpose, simple to align, and has a high signal-to-noise ratio. (C) 1999 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuzzy sets in the subject space are transformed to fuzzy solid sets in an increased object space on the basis of the development of the local umbra concept. Further, a counting transform is defined for reconstructing the fuzzy sets from the fuzzy solid sets, and the dilation and erosion operators in mathematical morphology are redefined in the fuzzy solid-set space. The algebraic structures of fuzzy solid sets can lead not only to fuzzy logic but also to arithmetic operations. Thus a fuzzy solid-set image algebra of two image transforms and five set operators is defined that can formulate binary and gray-scale morphological image-processing functions consisting of dilation, erosion, intersection, union, complement, addition, subtraction, and reflection in a unified form. A cellular set-logic array architecture is suggested for executing this image algebra. The optical implementation of the architecture, based on area coding of gray-scale values, is demonstrated. (C) 1995 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuzzification is introduced into gray-scale mathematical morphology by using two-input one-output fuzzy rule-based inference systems. The fuzzy inferring dilation or erosion is defined from the approximate reasoning of the two consequences of a dilation or an erosion and an extended rank-order operation. The fuzzy inference systems with numbers of rules and fuzzy membership functions are further reduced to a simple fuzzy system formulated by only an exponential two-input one-output function. Such a one-function fuzzy inference system is able to approach complex fuzzy inference systems by using two specified parameters within it-a proportion to characterize the fuzzy degree and an exponent to depict the nonlinearity in the inferring. The proposed fuzzy inferring morphological operators tend to keep the object details comparable to the structuring element and to smooth the conventional morphological operations. Based on digital area coding of a gray-scale image, incoherently optical correlation for neighboring connection, and optical thresholding for rank-order operations, a fuzzy inference system can be realized optically in parallel. (C) 1996 Society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ordered gray-scale erosion is suggested according to the definition of hit-miss transform. Instead of using three operations, two images, and two structuring elements, the developed operation requires only one operation and one structuring element, but with three gray-scale levels. Therefore, a union of the ordered gray-scale erosions with different structuring elements can constitute a simple image algebra to program any combined image processing function. An optical parallel ordered gray-scale erosion processor is developed based on the incoherent correlation in a single channel. Experimental results are also given for an edge detection and a pattern recognition. (C) 1998 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(98)00306-7].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Negabinary is a component of the positional number system. A complete set of negabinary arithmetic operations are presented, including the basic addition/subtraction logic, the two-step carry-free addition/subtraction algorithm based on negabinary signed-digit (NSD) representation, parallel multiplication, and the fast conversion from NSD to the normal negabinary in the carry-look-ahead mode. All the arithmetic operations can be performed with binary logic. By programming the binary reference bits, addition and subtraction can be realized in parallel with the same binary logic functions. This offers a technique to perform space-variant arithmetic-logic functions with space-invariant instructions. Multiplication can be performed in the tree structure and it is simpler than the modified signed-digit (MSD) counterpart. The parallelism of the algorithms is very suitable for optical implementation. Correspondingly, a general-purpose optical logic system using an electron trapping device is suggested. Various complex logic functions can be performed by programming the illumination of the data arrays without additional temporal latency of the intermediate results. The system can be compact. These properties make the proposed negabinary arithmetic-logic system a strong candidate for future applications in digital optical computing with the development of smart pixel arrays. (C) 1999 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(99)00803-X].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present, for the first time to our knowledge, a generalized lookahead logic algorithm for number conversion from signed-digit to complement representation. By properly encoding the signed-digits, all the operations are performed by binary logic, and unified logical expressions can be obtained for conversion from modified-signed-digit (MSD) to 2's complement, trinary signed-digit (TSD) to 3's complement, and quarternary signed-digit (QSD) to 4's complement. For optical implementation, a parallel logical array module using an electron-trapping device is employed and experimental results are shown. This optical module is suitable for implementing complex logic functions in the form of the sum of the product. The algorithm and architecture are compatible with a general-purpose optoelectronic computing system. (C) 2001 Society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper comprehensively analyzes the distortions of a circular wedge prism with 400 mm diameter in a scanner by method of optical-mechanical-thermal integrating analysis. The structure and intensity of the prism assembly is verified and checked, and the surface deformations of the prism under gravity load, as well as the thermo-elastic distortions of the prism, are analyzed in detail and evaluated, which is finally contrasted with the measured values of Zygo Mark interferometer. The results show: the maximal distortion of the prism assembly is 10 nm magnitude and the maximal stress is 0.441 Mpa, which has much tolerance to the precision requirement of structure and the admissible stress of material; the influence of heat effect on the surface deformations of prism is proved to be far greater than the influence of gravity load, so some strict temperature-controlled measures are to be considered when the scanner is used. (c) 2006 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A deep-etched polarization-independent binary fused-silica phase grating as a three-port beam splitter is designed and manufactured. The grating profile is optimized by use of the rigorous coupled-wave analysis around the 785 nm wavelength. The physical explanation of the grating is illustrated by the modal method. Simple analytical expressions of the diffraction efficiencies and modal guidelines for the three-port beam splitter grating design are given. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in good agreement with the theoretical values. (c) 2008 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Static optical transmission is restudied by postulation of the optical path as the proper element in a three-dimensional Riemannian manifold (no torsion); this postulation can be applied to describe the light-medium interactive system. On the basis of the postulation, the behaviors of light transmitting through the medium with refractive index n are investigated, the investigation covering the realms of both geometrical optics and wave optics. The wave equation of light in static transmission is studied modally, the postulation being employed to derive the exact form of the optical field equation in a medium (in which the light is viewed as a single-component field). Correspondingly, the relationships concerning the conservation of optical fluid and the dynamic properties are given, and some simple applications of the theories mentioned are presented.