934 resultados para Binary Image Representation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present the application of a non-linear dimensionality reduction technique for the learning and probabilistic classification of hyperspectral image. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. It gives much greater information content per pixel on the image than a normal colour image. This should greatly help with the autonomous identification of natural and manmade objects in unfamiliar terrains for robotic vehicles. However, the large information content of such data makes interpretation of hyperspectral images time-consuming and userintensive. We propose the use of Isomap, a non-linear manifold learning technique combined with Expectation Maximisation in graphical probabilistic models for learning and classification. Isomap is used to find the underlying manifold of the training data. This low dimensional representation of the hyperspectral data facilitates the learning of a Gaussian Mixture Model representation, whose joint probability distributions can be calculated offline. The learnt model is then applied to the hyperspectral image at runtime and data classification can be performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper intervenes in critical discussions about the representation of homosexuality. Rejecting the ‘manifest content’ of films, it turns to cultural history to map those public discourses which close down the ways in which films can be discussed. With relation to The Adventures of Priscilla, Queen of the Desert, it examines discussions of the film in Australian newspapers (both queer and mainstream) and finds that while there is disagreement about the interpretation to be made of the film, the terms within which those interpretations can be made are quite rigid. A matrix based on similarity, difference and value provides a series of positions and a vocabulary (transgression, assimilation, positive images and stereotypes) through which to make sense of this film. The article suggests that this matrix, and the idea that similarity and difference provide a suitable axis for making sense of homosexual identity, are problematic in discussing homosexual representation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to detect unusual events in surviellance footage as they happen is a highly desireable feature for a surveillance system. However, this problem remains challenging in crowded scenes due to occlusions and the clustering of people. In this paper, we propose using the Distributed Behavior Model (DBM), which has been widely used in computer graphics, for video event detection. Our approach does not rely on object tracking, and is robust to camera movements. We use sparse coding for classification, and test our approach on various datasets. Our proposed approach outperforms a state-of-the-art work which uses the social force model and Latent Dirichlet Allocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ubiquity of multimodality in hypermedia environments is undeniable. Bezemer and Kress (2008) have argued that writing has been displaced by image as the central mode for representation. Given the current technical affordances of digital technology and user-friendly interfaces that enable the ease of multimodal design, the conspicuous absence of images in certain domains of cyberspace is deserving of critical analysis. In this presentation, I examine the politics of discourses implicit within hypertextual spaces, drawing textual examples from a higher education website. I critically examine the role of writing and other modes of production used in what Fairclough (1993) refers to as discourses of marketisation in higher education, tracing four pervasive discourses of teaching and learning in the current economy: i) materialization, ii) personalization, iii) technologisation, and iv) commodification (Fairclough, 1999). Each of these arguments is supported by the critical analysis of multimodal texts. The first is a podcast highlighting the new architectonic features of a university learning space. The second is a podcast and transcript of a university Open Day interview with prospective students. The third is a time-lapse video showing the construction of a new science and engineering precinct. These three multimodal texts contrast a final web-based text that exhibits a predominance of writing and the powerful absence or silencing of the image. I connect the weightiness of words and the function of monomodality in the commodification of discourses, and its resistance to the multimodal affordances of web-based technologies, and how this is used to establish particular sets of subject positions and ideologies through which readers are constrained to occupy. Applying principles of critical language study by theorists that include Fairclough, Kress, Lemke, and others whose semiotic analysis of texts focuses on the connections between language, power, and ideology, I demonstrate how the denial of image and the privileging of written words in the multimodality of cyberspace is an ideological effect to accentuate the dominance of the institution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a combined structure for using real, complex, and binary valued vectors for semantic representation. The theory, implementation, and application of this structure are all significant. For the theory underlying quantum interaction, it is important to develop a core set of mathematical operators that describe systems of information, just as core mathematical operators in quantum mechanics are used to describe the behavior of physical systems. The system described in this paper enables us to compare more traditional quantum mechanical models (which use complex state vectors), alongside more generalized quantum models that use real and binary vectors. The implementation of such a system presents fundamental computational challenges. For large and sometimes sparse datasets, the demands on time and space are different for real, complex, and binary vectors. To accommodate these demands, the Semantic Vectors package has been carefully adapted and can now switch between different number types comparatively seamlessly. This paper describes the key abstract operations in our semantic vector models, and describes the implementations for real, complex, and binary vectors. We also discuss some of the key questions that arise in the field of quantum interaction and informatics, explaining how the wide availability of modelling options for different number fields will help to investigate some of these questions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. In recent years, sparse representation based classification(SRC) has received much attention in face recognition with multipletraining samples of each subject. However, it cannot be easily applied toa recognition task with insufficient training samples under uncontrolledenvironments. On the other hand, cohort normalization, as a way of mea-suring the degradation effect under challenging environments in relationto a pool of cohort samples, has been widely used in the area of biometricauthentication. In this paper, for the first time, we introduce cohort nor-malization to SRC-based face recognition with insufficient training sam-ples. Specifically, a user-specific cohort set is selected to normalize theraw residual, which is obtained from comparing the test sample with itssparse representations corresponding to the gallery subject, using poly-nomial regression. Experimental results on AR and FERET databases show that cohort normalization can bring SRC much robustness against various forms of degradation factors for undersampled face recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robust hashing is an emerging field that can be used to hash certain data types in applications unsuitable for traditional cryptographic hashing methods. Traditional hashing functions have been used extensively for data/message integrity, data/message authentication, efficient file identification and password verification. These applications are possible because the hashing process is compressive, allowing for efficient comparisons in the hash domain but non-invertible meaning hashes can be used without revealing the original data. These techniques were developed with deterministic (non-changing) inputs such as files and passwords. For such data types a 1-bit or one character change can be significant, as a result the hashing process is sensitive to any change in the input. Unfortunately, there are certain applications where input data are not perfectly deterministic and minor changes cannot be avoided. Digital images and biometric features are two types of data where such changes exist but do not alter the meaning or appearance of the input. For such data types cryptographic hash functions cannot be usefully applied. In light of this, robust hashing has been developed as an alternative to cryptographic hashing and is designed to be robust to minor changes in the input. Although similar in name, robust hashing is fundamentally different from cryptographic hashing. Current robust hashing techniques are not based on cryptographic methods, but instead on pattern recognition techniques. Modern robust hashing algorithms consist of feature extraction followed by a randomization stage that introduces non-invertibility and compression, followed by quantization and binary encoding to produce a binary hash output. In order to preserve robustness of the extracted features, most randomization methods are linear and this is detrimental to the security aspects required of hash functions. Furthermore, the quantization and encoding stages used to binarize real-valued features requires the learning of appropriate quantization thresholds. How these thresholds are learnt has an important effect on hashing accuracy and the mere presence of such thresholds are a source of information leakage that can reduce hashing security. This dissertation outlines a systematic investigation of the quantization and encoding stages of robust hash functions. While existing literature has focused on the importance of quantization scheme, this research is the first to emphasise the importance of the quantizer training on both hashing accuracy and hashing security. The quantizer training process is presented in a statistical framework which allows a theoretical analysis of the effects of quantizer training on hashing performance. This is experimentally verified using a number of baseline robust image hashing algorithms over a large database of real world images. This dissertation also proposes a new randomization method for robust image hashing based on Higher Order Spectra (HOS) and Radon projections. The method is non-linear and this is an essential requirement for non-invertibility. The method is also designed to produce features more suited for quantization and encoding. The system can operate without the need for quantizer training, is more easily encoded and displays improved hashing performance when compared to existing robust image hashing algorithms. The dissertation also shows how the HOS method can be adapted to work with biometric features obtained from 2D and 3D face images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past couple of decades, the cultural field formerly known as ‘domestic’, and later ‘personal’ photography has been remediated and transformed as part of the social web, with its convergence of personal expression, interpersonal communication, and online social networks (most recently via platforms like Flickr, Facebook and Twitter). Meanwhile, the Digital Storytelling movement (involving the workshop-based production of short autobiographical videos) from its beginnings in the mid 1990s relied heavily on the narrative power of the personal photograph, often sourced from family albums, and later from online archives. This paper addresses the new issues arising for the politics of self-representation and personal photography in the era of social media, focusing particularly on the consequences of online image-sharing. It discusses in detail the practices of selection, curation, manipulation and editing of personal photographic images among a group of activist-oriented queer digital storytellers who have in common a stated desire to share their personal stories in pursuit of social change, and whose stories often aim to address both intimate and antagonistic publics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioacoustic data can provide an important base for environmental monitoring. To explore a large amount of field recordings collected, an automated similarity search algorithm is presented in this paper. A region of an audio defined by frequency and time bounds is provided by a user; the content of the region is used to construct a query. In the retrieving process, our algorithm will automatically scan through recordings to search for similar regions. In detail, we present a feature extraction approach based on the visual content of vocalisations – in this case ridges, and develop a generic regional representation of vocalisations for indexing. Our feature extraction method works best for bird vocalisations showing ridge characteristics. The regional representation method allows the content of an arbitrary region of a continuous recording to be described in a compressed format.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study considers the challenges in representing women from other cultures in the crime fiction genre. The study is presented in two parts; an exegesis and a creative practice component consisting of a full length crime fiction novel, Batafurai. The exegesis examines the historical period of a section of the novel—post-war Japan—and how the area of research known as Occupation Studies provides an insight into the conditions of women during this period. The exegesis also examines selected postcolonial theory and its exposition of representations of the 'other' as a western construct designed to serve Eurocentric ends. The genre of crime fiction is reviewed, also, to determine how characters purportedly representing Oriental cultures are constricted by established stereotypes. Two case studies are examined to investigate whether these stereotypes are still apparent in contemporary Australian crime fiction. Finally, I discuss my own novel, Batafurai, to review how I represented people of Asian background, and whether my attempts to resist stereotype were successful. My conclusion illustrates how novels written in the crime fiction genre are reliant on strategies that are action-focused, rather than character-based, and thus often use easily recognizable types to quickly establish frameworks for their stories. As a sub-set of popular fiction, crime fiction has a tendency to replicate rather than challenge established stereotypes. Where it does challenge stereotypes, it reflects a territory that popular culture has already visited, such as the 'female', 'black' or 'gay' detective. Crime fiction also has, as one of its central concerns, an interest in examining and reinforcing the notion of societal order. It repeatedly demonstrates that crime either does not pay or should not pay. One of the ways it does this is to contrast what is 'good', known and understood with what is 'bad', unknown, foreign or beyond our normal comprehension. In western culture, the east has traditionally been employed as the site of difference, and has been constantly used as a setting of contrast, excitement or fear. Crime fiction conforms to this pattern, using the east to add a richness and depth to what otherwise might become a 'dry' tale. However, when used in such a way, what is variously eastern, 'other' or Oriental can never be paramount, always falling to secondary side of the binary opposites (good/evil, known/unknown, redeemed/doomed) at work. In an age of globalisation, the challenge for contemporary writers of popular fiction is to be responsive to an audience that demands respect for all cultures. Writers must demonstrate that they are sensitive to such concerns and can skillfully manage the tensions caused by the need to deliver work that operates within the parameters of the genre, and the desire to avoid offence to any cultural or ethnic group. In my work, my strategy to manage these tensions has been to create a back-story for my characters of Asian background, developing them above mere genre types, and to situate them with credibility in time and place through appropriate historical research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The selection of optimal camera configurations (camera locations, orientations, etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we propose a statistical framework of the problem as well as propose a trans-dimensional simulated annealing algorithm to effectively deal with it. We compare our approach with a state-of-the-art method based on binary integer programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than two alternative heuristics designed to deal with the scalability issue of BIP. Last, we show the versatility of our approach using a number of specific scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific sub-regions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existing multi-model approaches for image set classification extract local models by clustering each image set individually only once, with fixed clusters used for matching with other image sets. However, this may result in the two closest clusters to represent different characteristics of an object, due to different undesirable environmental conditions (such as variations in illumination and pose). To address this problem, we propose to constrain the clustering of each query image set by forcing the clusters to have resemblance to the clusters in the gallery image sets. We first define a Frobenius norm distance between subspaces over Grassmann manifolds based on reconstruction error. We then extract local linear subspaces from a gallery image set via sparse representation. For each local linear subspace, we adaptively construct the corresponding closest subspace from the samples of a probe image set by joint sparse representation. We show that by minimising the sparse representation reconstruction error, we approach the nearest point on a Grassmann manifold. Experiments on Honda, ETH-80 and Cambridge-Gesture datasets show that the proposed method consistently outperforms several other recent techniques, such as Affine Hull based Image Set Distance (AHISD), Sparse Approximated Nearest Points (SANP) and Manifold Discriminant Analysis (MDA).