944 resultados para Bilinear matrix inequalities (BMIs)
Resumo:
This work presents a strategy to control nonlinear responses of aeroelastic systems with control surface freeplay. The proposed methodology is developed for the three degrees of freedom typical section airfoil considering aerodynamic forces from Theodorsen's theory. The mathematical model is written in the state space representation using rational function approximation to write the aerodynamic forces in time domain. The control system is designed using the fuzzy Takagi-Sugeno modeling to compute a feedback control gain. It useds Lyapunov's stability function and linear matrix inequalities (LMIs) to solve a convex optimization problem. Time simulations with different initial conditions are performed using a modified Runge-Kutta algorithm to compare the system with and without control forces. It is shown that this approach can compute linear control gain able to stabilize aeroelastic systems with discontinuous nonlinearities.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a new methodology to analyze aeroelastic stability in a continuous range of flight envelope with varying parameter of velocity and altitude. The focus of the paper is to demonstrate that linear matrix inequalities can be used to evaluate the aeroelastic stability in a region of flight envelope instead of a single point, like classical methods. The proposed methodology can also be used to study if a system remains stable during an arbitrary motion from one point to another in the flight envelope, i.e., when the problem becomes time-variant. The main idea is to represent the system as a polytopic differential inclusion system using rational function approximation to write the model in time domain. The theory is outlined and simulations are carried out on the benchmark AGARD 445.6 wing to demonstrate the method. The classical pk-method is used for comparing results and validating the approach. It is shown that this method is efficient to identify stability regions in the flight envelope. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In this work, sufficient conditions for the existence of switching laws for stabilizing switched TS fuzzy systems via a fuzzy Lyapunov function are proposed. The conditions are found by exploring properties of the membership functions and are formulated in terms of linear matrix inequalities (LMIs). Stabilizing switching conditions with bounds on the decay rate solution and H1 performance are also obtained. Numerical examples illustrate the effectiveness of the proposed design methods.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Robust controller design of a wheelchair mobile via LMI approach to SPR systems with feedback output
Resumo:
This article discusses the design of robust controller applied to Wheelchair Furniture via Linear Matrix Inequalities (LMI), to obtain Strictly Positive Real (SPR) systems. The contributions of this work were the choice of a mathematical model for wheelchair: mobile with uncertainty about the position of the center of gravity (CG), the decoupling of the kinematic and dynamical systems, linearization of the models, the headquarters building of parametric uncertainties, the proposal of the control loop and control law with a specified decay rate.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The common practice in industry is to perform flutter analyses considering the generalized stiffness and mass matrices obtained from finite element method (FEM) and aerodynamic generalized force matrices obtained from a panel method, as the doublet lattice method. These analyses are often reperformed if significant differences are found in structural frequencies and damping ratios determined from ground vibration tests compared to FEM. This unavoidable rework can result in a lengthy and costly process of analysis during the aircraft development. In this context, this paper presents an approach to perform flutter analysis including uncertainties in natural frequencies and damping ratios. The main goal is to assure the nominal system’s stability considering these modal parameters varying in a limited range. The aeroelastic system is written as an affine parameter model and the robust stability is verified solving a Lyapunov function through linear matrix inequalities and convex optimization
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
This work proposes a computational tool to assist power system engineers in the field tuning of power system stabilizers (PSSs) and Automatic Voltage Regulators (AVRs). The outcome of this tool is a range of gain values for theses controllers within which there is a theoretical guarantee of stability for the closed-loop system. This range is given as a set of limit values for the static gains of the controllers of interest, in such a way that the engineer responsible for the field tuning of PSSs and/or AVRs can be confident with respect to system stability when adjusting the corresponding static gains within this range. This feature of the proposed tool is highly desirable from a practical viewpoint, since the PSS and AVR commissioning stage always involve some readjustment of the controller gains to account for the differences between the nominal model and the actual behavior of the system. By capturing these differences as uncertainties in the model, this computational tool is able to guarantee stability for the whole uncertain model using an approach based on linear matrix inequalities. It is also important to remark that the tool proposed in this paper can also be applied to other types of parameters of either PSSs or Power Oscillation Dampers, as well as other types of controllers (such as speed governors, for example). To show its effectiveness, applications of the proposed tool to two benchmarks for small signal stability studies are presented at the end of this paper.
Resumo:
In this paper we present error analysis for a Monte Carlo algorithm for evaluating bilinear forms of matrix powers. An almost Optimal Monte Carlo (MAO) algorithm for solving this problem is formulated. Results for the structure of the probability error are presented and the construction of robust and interpolation Monte Carlo algorithms are discussed. Results are presented comparing the performance of the Monte Carlo algorithm with that of a corresponding deterministic algorithm. The two algorithms are tested on a well balanced matrix and then the effects of perturbing this matrix, by small and large amounts, is studied.
Resumo:
In this paper we consider bilinear forms of matrix polynomials and show that these polynomials can be used to construct solutions for the problems of solving systems of linear algebraic equations, matrix inversion and finding extremal eigenvalues. An almost Optimal Monte Carlo (MAO) algorithm for computing bilinear forms of matrix polynomials is presented. Results for the computational costs of a balanced algorithm for computing the bilinear form of a matrix power is presented, i.e., an algorithm for which probability and systematic errors are of the same order, and this is compared with the computational cost for a corresponding deterministic method.
Resumo:
Proper formulation of stress-strain relations, particularly in tension-compression situations for isotropic biomodulus materials, is an unresolved problem. Ambartsumyan's model [8] and Jones' weighted compliance matrix model [9] do not satisfy the principle of coordinate invariance. Shapiro's first stress invariant model [10] is too simple a model to describe the behavior of real materials. In fact, Rigbi [13] has raised a question about the compatibility of bimodularity with isotropy in a solid. Medri [2] has opined that linear principal strain-principal stress relations are fictitious, and warned that the bilinear approximation of uniaxial stress-strain behavior leads to ill-working bimodulus material model under combined loading. In the present work, a general bilinear constitutive model has been presented and described in biaxial principal stress plane with zonewise linear principal strain-principal stress relations. Elastic coefficients in the model are characterized based on the signs of (i) principal stresses, (ii) principal strains, and (iii) on the value of strain energy component ratio ER greater than or less than unity. The last criterion is used in tension-compression and compression-tension situations to account for different shear moduli in pure shear stress and pure shear strain states as well as unequal cross compliances.
Resumo:
The Heisenberg model for spin-1 bosons in one dimension presents many different quantum phases, including the famous topological Haldane phase. Here we study the robustness of such phases in front of a SU(2) symmetry-breaking field as well as the emergence of unique phases. Previous studies have analyzed the effect of such uniaxial anisotropy in some restricted relevant points of the phase diagram. Here we extend those studies and present the complete phase diagram of the spin-1 chain with uniaxial anisotropy. To this aim, we employ the density-matrix renormalization group together with analytical approaches. The complete phase diagram can be realized using ultracold spinor gases in the Mott insulator regime under a quadratic Zeeman effect.