858 resultados para Basophil Degranulation Test -- methods
Resumo:
As we all know, rock-like materials will absolutely show very different mechanical properties under the compressive stress and tensile stress respectively. Similarly, under the dynamic compressive stress or dynamic tensile stress, the characteristics of the dynamics showed by the rock-like materials also have great differences from the mechanical behavior under static force. Studying their similarities and differences in rock mechanics theory and practical engineering will be of great significance. Generally, there are compression modulus of elasticity and tensile modulus of elasticity corresponding to compressive stress state and the tensile stress state in the rock. Both the two kinds of elastic modulus play an extremely important role in calculation of engineering mechanics. Their reliability directly affects the accuracy and reliability of the calculation results of internal stress field and displacement field of engineering rock mass. At present, it is easy to obtain the compression modulus of elasticity in laboratory; but it is very difficult to determine the tensile modulus of elasticity with direct tensile test due to that direct tensile test is difficult to perform in laboratory in general. In order to solve this problem, this thesis invents and develops several indirect test methods to determine the static or dynamic tensile modulus of elasticity of rock-type materials with high reliability and good interoperability. For the static tensile modulus of elasticity, the analytical stress field solution has been given out for the Brazilian disc under the radial and linear concentration load with Airy stress function method. At the same time, the stress field has been modeled for the Brazilian disc test by using the finite element software of ANSYS and ADINA. The analytical stress field solution is verified to be right by comparatively researching the analytical stress field solution and the numerical stress field solution. Based on the analytical stress field solution, this thesis proposes that a strain gauge is pasted at the Brazilian disc center along the direction perpendicular to the applied force to indirectly determine the static tensile modulus of elasticity, and related measurement theory also has been developed. The method proposed here has good feasibility and high accuracy verified by the experimental results. For the dynamic tensile modulus of elasticity, two measuring methods and theories are invented here. The first one is that the Split Hopkinson Pressure Bar is used to attract the Brazilian disc to generate the dynamic load, make the dynamic tensile stress is formed at the Brazilian disc center; and also a strain gauge is pasted at the Brazilian disc center to record the deformation. The second is that, in the Hopkinson effect phenomenon, the reflection tensile stress wave is formed when the shock wave propagates to the free end of cylindrical rock bar and reflect, which can make the rock bar is under dynamic tensile stress state; and some strain gauges are pasted at the appropriate place on the rock bar to record the strain coursed by the tensile or compressive stress wave. At last, the dynamic tensile modulus of elasticity can be determined by the recorded strain and the dynamic tensile stress which can be determined by related theories developed in this thesis.
Resumo:
There has been an increased use of the Doubly-Fed Induction Machine (DFIM) in ac drive applications in recent times, particularly in the field of renewable energy systems and other high power variable-speed drives. The DFIM is widely regarded as the optimal generation system for both onshore and offshore wind turbines and has also been considered in wave power applications. Wind power generation is the most mature renewable technology. However, wave energy has attracted a large interest recently as the potential for power extraction is very significant. Various wave energy converter (WEC) technologies currently exist with the oscillating water column (OWC) type converter being one of the most advanced. There are fundemental differences in the power profile of the pneumatic power supplied by the OWC WEC and that of a wind turbine and this causes significant challenges in the selection and rating of electrical generators for the OWC devises. The thesis initially aims to provide an accurate per-phase equivalent circuit model of the DFIM by investigating various characterisation testing procedures. Novel testing methodologies based on the series-coupling tests is employed and is found to provide a more accurate representation of the DFIM than the standard IEEE testing methods because the series-coupling tests provide a direct method of determining the equivalent-circuit resistances and inductances of the machine. A second novel method known as the extended short-circuit test is also presented and investigated as an alternative characterisation method. Experimental results on a 1.1 kW DFIM and a 30 kW DFIM utilising the various characterisation procedures are presented in the thesis. The various test methods are analysed and validated through comparison of model predictions and torque-versus-speed curves for each induction machine. Sensitivity analysis is also used as a means of quantifying the effect of experimental error on the results taken from each of the testing procedures and is used to determine the suitability of the test procedures for characterising each of the devices. The series-coupling differential test is demonstrated to be the optimum test. The research then focuses on the OWC WEC and the modelling of this device. A software model is implemented based on data obtained from a scaled prototype device situated at the Irish test site. Test data from the electrical system of the device is analysed and this data is used to develop a performance curve for the air turbine utilised in the WEC. This performance curve was applied in a software model to represent the turbine in the electro-mechanical system and the software results are validated by the measured electrical output data from the prototype test device. Finally, once both the DFIM and OWC WEC power take-off system have been modeled succesfully, an investigation of the application of the DFIM to the OWC WEC model is carried out to determine the electrical machine rating required for the pulsating power derived from OWC WEC device. Thermal analysis of a 30 kW induction machine is carried out using a first-order thermal model. The simulations quantify the limits of operation of the machine and enable thedevelopment of rating requirements for the electrical generation system of the OWC WEC. The thesis can be considered to have three sections. The first section of the thesis contains Chapters 2 and 3 and focuses on the accurate characterisation of the doubly-fed induction machine using various testing procedures. The second section, containing Chapter 4, concentrates on the modelling of the OWC WEC power-takeoff with particular focus on the Wells turbine. Validation of this model is carried out through comparision of simulations and experimental measurements. The third section of the thesis utilises the OWC WEC model from Chapter 4 with a 30 kW induction machine model to determine the optimum device rating for the specified machine. Simulations are carried out to perform thermal analysis of the machine to give a general insight into electrical machine rating for an OWC WEC device.
Resumo:
Purpose – The purpose of this paper is to develop a quality control tool based on rheological test methods for solder paste and flux media. Design/methodology/approach – The rheological characterisation of solder pastes and flux media was carried out through the creep-recovery, thixotropy and viscosity test methods. A rheometer with a parallel plate measuring geometry of 40mm diameter and a gap height of 1mm was used to characterise the paste and associated flux media. Findings – The results from the study showed that the creep-recovery test can be used to study the deformation and recovery of the pastes, which can be used to understand the slump behaviour in solder pastes. In addition, the results from the thixotropic and viscosity test were unsuccessful in determining the differences in the rheological flow behaviour in the solder pastes and the flux medium samples. Research limitations/implications – More extensive rheological and printing testing is needed in order to correlate the findings from this study with the printing performance of the pastes. Practical implications – The rheological test method presented in the paper will provide important information for research and development, quality control and production staff to facilitate the manufacture of solder pastes and flux media. Originality/value – The paper explains how the rheological test can be used as a quality control tool to identify the suitability of a developmental solder paste and flux media used for the printing process.
Resumo:
Purpose – The purpose of this paper is to investigate the rheological behaviour of three different lead-free solder pastes used for surface mount applications in the electronic industry.Design/methodology/approach – This study concerns the rheological measurements of solder paste samples and is made up of three parts. The first part deals with the measurement of rhelogical properties with three different measuring geometries, the second part looks into the effect of frequencies on oscillatory stress sweep measurements and the final part reports on the characterisation and comparison of three different types of Pb-free solder pastes. Findings – Among the three geometries, the serrated parallel plate was found effective in minimising the wall-slip effect. From the oscillatory stresssweep data with different frequencies; it was observed that the linear visco-elastic region is independent of frequency for all the solder paste samples. To understand the shear thinning behaviour of solder paste, the well known Cross and Carreau models were fitted to the viscosity data. Moreover,creep-recovery and dynamic frequency-sweep tests were also carried out without destroying the sample’s structure and have yielded useful information on the pastes behaviour.Research limitations/implications – More extensive research is needed to fully characterise the wall-slip behaviour during the rheological measurements of solder pastes. Practical implications – The rheological test results presented in this paper will be of important value for research and development, quality control and facilitation of the manufacturing of solder pastes and flux mediums. Originality/value – This paper shows how wall-slip effects can be effectively avoided during rheological measurements of solder pastes. The paper also outlines how different rheological test methods can be used to characterise solder paste behaviours
Resumo:
During free surface moulding processes such as thermoforming and blow moulding heated polymer materials are subjected to rapid biaxial deformation as they are drawn into the shape of a mould. In the development of process simulations it is therefore essential to be able to accurately measure and model this behaviour. Conventional uniaxial test methods are generally inadequate for this purpose and this has led to the development of specialised biaxial test rigs. In this paper the results of several programmes of biaxial tests conducted at Queen’s University are presented and discussed. These have included tests on high impact polystyrene (HIPS), polypropylene (PP) and aPET, and the work has involved a wide variety of experimental conditions. In all cases the results clearly demonstrate the unique characteristics of materials when subjected to biaxial deformation. PP draws the highest stresses and it is the most temperature sensitive of the materials. aPET is initially easier to form but exhibits strain hardening at higher strains. This behaviour is increased with increasing strain rate but at very high strain rates these effects are increasingly mollified by adiabatic heating. Both aPET and PP (to a lesser degree) draw much higher stresses in sequential stretching showing that this behaviour must be considered in process simulations. HIPS showed none of these effects and it is the easiest material to deform.
Resumo:
This paper reports a study carried out to develop a self-compacting fibre reinforced concrete containing a high fibre content with slurry infiltrated fibre concrete (SIFCON). The SIFCON was developed with 10% of steel fibres which are infiltrated by self-compacting cement slurry without any vibration. Traditionally, the infiltration of the slurry into the layer of fibres is carried out under intensive vibration. A two-level fractional factorial design was used to optimise the properties of cement-based slurries with four independent variables, such as dosage of silica fume, dosage of superplasticiser, sand content, and water/cement ratio (W/C). Rheometer, mini-slump test, Lombardi plate cohesion meter, J-fibre penetration test, and induced bleeding were used to assess the behaviour of fresh cement slurries. The compressive strengths at 7 and 28 days were also measured. The statistical models are valid for slurries made with W/C of 0.40 to 0.50, 50 to 100% of sand by mass of cement, 5 to 10% of silica fume by mass of cement, and SP dosage of 0.6 to 1.2% by mass of cement. This model makes it possible to evaluate the effect of individual variables on measured parameters of fresh cement slurries. The proposed models offered useful information to understand trade-offs between mix variables and compare the responses obtained from various test methods in order to optimise self-compacting SIFCON.
Resumo:
A new generation of water soluble tetrazolium salts have recently become available and in this study we compared a colorimetric assay developed using one of these salts, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8), with a previously developed 2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide(XTT) colorimetric assay to determine which agent is most suitable for use as a colorimetric indicator in susceptibility testing. The MICs of 6 antibiotics were determined for 33 staphylococci using both colorimetric assays and compared with those obtained using the British Society for Antimicrobial Chemotherapy reference broth microdilution method. Absolute categorical agreement between the reference and test methods ranged from 79% (cefuroxime) to 100% (vancomycin) for both assays. No minor or major errors occurred using either assay with very major errors ranging from zero (vancomycin) to seven (cefuroxime). Analysis of the distribution of differences in the 1092 dilution MIC results revealed overall agreement, within the accuracy limits of the standard test ( 1 1092 dilution), using the XTT and WST-8 assays of 98% and 88%, respectively. Further studies on 31 ESBL-producing isolates were performed using the XTT method with absolute categorical agreement ranging from 87% (nitrofurantoin) to 100% (ofloxacin and meropenem). No errors were noted for either ofloxacin or meropenem with overall agreement of 91%. The data suggests that XTT is more reliable and accurate than WST-8 for use in a rapid antimicrobial susceptibility test. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The susceptibility of Staphylococcus aureus [meticillin-resistant (MRSA) and meticillin-sensitive (MSSA)] and coagulase-negative staphylococci (CoNS), which respectively form part of the transient and commensal skin flora, to tea-tree oil (TTO) was compared using broth microdilution and quantitative in vitro time-kill test methods. MRSA and MSSA isolates were significantly less susceptible than CoNS isolates, as measured by both MIC and minimum bactericidal concentration. A significant decrease in the mean viable count of all isolates in comparison with the control was seen at each time interval in time-kill assays. However, the only significant difference in the overall mean log(10) reduction in viable count between the groups of isolates was between CoNS and MSSA at 3 h, with CoNS isolates demonstrating a significantly lower mean reduction. To provide a better simulation of in vivo conditions on the skin, where bacteria are reported to grow as microcolonies encased in glycocalyx, the bactericidal activity of TTO against isolates grown as biofilms was also compared. Biofilms formed by MSSA and MRSA isolates were completely eradicated following exposure to 5 % TTO for 1 h. In contrast, of the biofilms formed by the nine CoNS isolates tested, only five were completely killed, although a reduction in viable count was apparent for the other four isolates. These results suggest that TTO exerts a greater bactericidal activity against biofilm-grown MRSA and MSSA isolates than against some biofilm-grown CoNS isolates.
Resumo:
There is an increasing need to identify the effect of mix composition on the rheological properties of composite cement pastes using simple tests to determine the fluidity, the cohesion and other mechanical properties of grouting applications such as compressive strength. This paper reviews statistical models developed using a fractional factorial design which was carried out to model the influence of key parameters on properties affecting the performance of composite cement paste. Such responses of fluidity included mini-slump, flow time using Marsh cone and cohesion measured by Lombardi plate meter and unit weight, and compressive strength at 3 d, 7 d and 28 d. The models are valid for mixes with 0.35 to 0.42 water-to-binder ratio (W/B), 10% to 40% of pulverised fuel ash (PFA) as replacement of cement by mass, 0.02 to 0.06% of viscosity enhancer admixture (VEA), by mass of binder, and 0.3 to 1.2% of superplasticizer (SP), by mass of binder. The derived models that enable the identification of underlying primary factors and their interactions that influence the modelled responses of composite cement paste are presented. Such parameters can be useful to reduce the test protocol needed for proportioning of composite cement paste. This paper attempts also to demonstrate the usefulness of the models to better understand trade-offs between parameters and compare the responses obtained from the various test methods which are highlighted. The multi parametric optimization is used in order to establish isoresponses for a desirability function of cement composite paste. Results indicate that the replacement of cement by PFA is compromising the early compressive strength and up 26%, the desirability function decreased.
Resumo:
There is an increasing need to identify the rheological properties of cement grout using a simple test to determine the fluidity, and other properties of underwater applications such as washout resistance and compressive strength. This paper reviews statistical models developed using a factorial design that was carried out to model the influence of key parameters on properties affecting the performance of underwater cement grout. Such responses of fluidity included minislump and flow time measured by Marsh cone, washout resistance, unit weight, and compressive strength. The models are valid for mixes with 0.35–0.55 water-to-binder ratio (W/B), 0.053–0.141% of antiwashout admixture (AWA), by mass of water, and 0.4–1.8% (dry extract) of superplasticizer (SP), by mass of binder. Two types of underwater grout were tested: the first one made with cement and the second one made with 20% of pulverised fuel ash (PFA) replacement, by mass of binder. Also presented are the derived models that enable the identification of underlying primary factors and their interactions that influence the modelled responses of underwater cement grout. Such parameters can be useful to reduce the test protocol needed for proportioning of underwater cement grout. This paper attempts also to demonstrate the usefulness of the models to better understand trade-offs between parameters and compare the responses obtained from the various test methods that are highlighted.
Resumo:
Contact friction plays a critical role in all the major thermoforming processes for polymers. However, these effects are very difficult to measure in practice and, as a result, have received little scientific investigation. In this work, two independently developed test methods for the measurement of elevated temperature polymer-to-polymer contact friction are presented, and their results are compared in detail for the first time. One is based on a modified moving sled friction test, whereas the other uses a rotational rheometer. In each case, friction tests were conducted between two plug and two sheet materials. The results show that broadly similar coefficients of friction were obtained from the two test methods. The measured values were quite low (<0.3) at lower temperatures and typically were higher for polypropylene (PP) sheet than for polystyrene (PS). On approaching the glass transition temperature for PS (95°C) and the crystalline melting point for PP (165°C), the friction coefficients rose very sharply, and both test techniques became increasingly unreliable. It was concluded that despite their physical differences, both test techniques were able to capture the highly temperature sensitive nature of friction between polymer materials used in thermoforming.
Resumo:
A range of seven test methods was used to assess the effectiveness of curing on C30 and C50 Portland cement concretes. Curing was by formwork retention, wrapping in wet hessian or wrapping in polythene for periods of between one and seven days. Specimens from each mix were also subjected to both air and water storage.
Resumo:
A full-scale seven-storey in-situ advanced reinforced concrete building frame was constructed in the Building Research Establishment's Cardington laboratory encompassing a range of different concrete mixes and construction techniques. This provided an opportunity to use in-situ non-destructive test methods, namely Lok and CAPO tests, on a systematic basis during the construction of the building. They were used in conjunction with both standard and temperature-matched cube specimens to assess their practicality and their individual capabilities under field conditions. Results have been analysed and presented to enable comparisons of the performance of the individual test methods employed.
Resumo:
A new generation of water soluble tetrazolium salts have recently become available and in this study we compared a colorimetric assay developed using one of these salts, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8), with a previously developed 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) colorimetric assay to determine which agent is most suitable for use as a colorimetric indicator in susceptibility testing. The MICs of 6 antibiotics were determined for 33 staphylococci using both colorimetric assays and compared with those obtained using the British Society for Antimicrobial Chemotherapy reference broth microdilution method. Absolute categorical agreement between the reference and test methods ranged from 79% (cefuroxime) to 100% (vancomycin) for both assays. No minor or major errors occurred using either assay with very major errors ranging from zero (vancomycin) to seven (cefuroxime). Analysis of the distribution of differences in the log2 dilution MIC results revealed overall agreement, within the accuracy limits of the standard test (± 1 log2 dilution), using the XTT and WST-8 assays of 98% and 88%, respectively. Further studies on 31 ESBL-producing isolates were performed using the XTT method with absolute categorical agreement ranging from 87% (nitrofurantoin) to 100% (ofloxacin and meropenem). No errors were noted for either ofloxacin or meropenem with overall agreement of 91%. The data suggests that XTT is more reliable and accurate than WST-8 for use in a rapid antimicrobial susceptibility test.