943 resultados para Basal Ganglia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parkinson's disease patients may have difficulty decoding prosodic emotion cues. These data suggest that the basal ganglia are involved, but may reflect dorsolateral prefrontal cortex dysfunction. An auditory emotional n-back task and cognitive n-back task were administered to 33 patients and 33 older adult controls, as were an auditory emotional Stroop task and cognitive Stroop task. No deficit was observed on the emotion decoding tasks; this did not alter with increased frontal lobe load. However, on the cognitive tasks, patients performed worse than older adult controls, suggesting that cognitive deficits may be more prominent. The impact of frontal lobe dysfunction on prosodic emotion cue decoding may only become apparent once frontal lobe pathology rises above a threshold.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep Brain Stimulation (DBS) is a treatment routinely used to alleviate the symptoms of Parkinson's disease (PD). In this type of treatment, electrical pulses are applied through electrodes implanted into the basal ganglia of the patient. As the symptoms are not permanent in most patients, it is desirable to develop an on-demand stimulator, applying pulses only when onset of the symptoms is detected. This study evaluates a feature set created for the detection of tremor - a cardinal symptom of PD. The designed feature set was based on standard signal features and researched properties of the electrical signals recorded from subthalamic nucleus (STN) within the basal ganglia, which together included temporal, spectral, statistical, autocorrelation and fractal properties. The most characterized tremor related features were selected using statistical testing and backward algorithms then used for classification on unseen patient signals. The spectral features were among the most efficient at detecting tremor, notably spectral bands 3.5-5.5 Hz and 0-1 Hz proved to be highly significant. The classification results for determination of tremor achieved 94% sensitivity with specificity equaling one.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Individual differences in cognitive style can be characterized along two dimensions: ‘systemizing’ (S, the drive to analyze or build ‘rule-based’ systems) and ‘empathizing’ (E, the drive to identify another's mental state and respond to this with an appropriate emotion). Discrepancies between these two dimensions in one direction (S > E) or the other (E > S) are associated with sex differences in cognition: on average more males show an S > E cognitive style, while on average more females show an E > S profile. The neurobiological basis of these different profiles remains unknown. Since individuals may be typical or atypical for their sex, it is important to move away from the study of sex differences and towards the study of differences in cognitive style. Using structural magnetic resonance imaging we examined how neuroanatomy varies as a function of the discrepancy between E and S in 88 adult males from the general population. Selecting just males allows us to study discrepant E-S profiles in a pure way, unconfounded by other factors related to sex and gender. An increasing S > E profile was associated with increased gray matter volume in cingulate and dorsal medial prefrontal areas which have been implicated in processes related to cognitive control, monitoring, error detection, and probabilistic inference. An increasing E > S profile was associated with larger hypothalamic and ventral basal ganglia regions which have been implicated in neuroendocrine control, motivation and reward. These results suggest an underlying neuroanatomical basis linked to the discrepancy between these two important dimensions of individual differences in cognitive style.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates the two later-acquired but proficient languages, English and Hindi, of two multilingual individuals with transcortical aphasia (right basal ganglia lesion in GN and brain stem lesion in GS). Dissociation between lexical and syntactic profiles in both the languages with a uniform performance across the languages at the lexical level and an uneven performance across the languages at the syntactic level was observed. Their performances are discussed in relation to the implicit/explicit language processes (Paradis, 1994 and Paradis, 2004) and the declarative/procedural model (Ullman, 2001b and Ullman, 2005) of bilingual language processing. Additionally, their syntactic performance is interpreted in relation to the salient grammatical contrasts between English and Hindi.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Behavioural evidence suggests that English regular past tense forms are automatically decomposed into their stem and affix (played  = play+ed) based on an implicit linguistic rule, which does not apply to the idiosyncratically formed irregular forms (kept). Additionally, regular, but not irregular inflections, are thought to be processed through the procedural memory system (left inferior frontal gyrus, basal ganglia, cerebellum). It has been suggested that this distinction does not to apply to second language (L2) learners of English; however, this has not been tested at the brain level. This fMRI study used a masked-priming task with regular and irregular prime-target pairs (played-play/kept-keep) to investigate morphological processing in native and highly proficient late L2 English speakers. No between-groups differences were revealed. Compared to irregular pairs, regular pairs activated the pars opercularis, bilateral caudate nucleus and the right cerebellum, which are part of the procedural memory network and have been connected with the processing of morphologically complex forms. Our study is the first to provide evidence for native-like involvement of the procedural memory system in processing of regular past tense by late L2 learners of English.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One potential source of heterogeneity within autism spectrum conditions (ASC) is language development and ability. In 80 high-functioning male adults with ASC, we tested if variations in developmental and current structural language are associated with current neuroanatomy. Groups with and without language delay differed behaviorally in early social reciprocity, current language, but not current autistic features. Language delay was associated with larger total gray matter (GM) volume, smaller relative volume at bilateral insula, ventral basal ganglia, and right superior, middle, and polar temporal structures, and larger relative volume at pons and medulla oblongata in adulthood. Despite this heterogeneity, those with and without language delay showed significant commonality in morphometric features when contrasted with matched neurotypical individuals (n = 57). In ASC, better current language was associated with increased GM volume in bilateral temporal pole, superior temporal regions, dorsolateral fronto-parietal and cerebellar structures, and increased white matter volume in distributed frontal and insular regions. Furthermore, current language–neuroanatomy correlation patterns were similar across subgroups with or without language delay. High-functioning adult males with ASC show neuroanatomical variations associated with both developmental and current language characteristics. This underscores the importance of including both developmental and current language as specifiers for ASC, to help clarify heterogeneity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Cluttering is a fluency disorder characterised by overly rapid or jerky speech patterns that compromise intelligibility. The neural correlates of cluttering are unknown but theoretical accounts implicate the basal ganglia and medial prefrontal cortex. Dysfunction in these brain areas would be consistent with difficulties in selection and control of speech motor programs that are characteristic of speech disfluencies in cluttering. There is a surprising lack of investigation into this disorder using modern imaging techniques. Here, we used functional MRI to investigate the neural correlates of cluttering. Method We scanned 17 adults who clutter and 17 normally fluent control speakers matched for age and sex. Brain activity was recorded using sparse-sampling functional MRI while participants viewed scenes and either (i) produced overt speech describing the scene or (ii) read out loud a sentence provided that described the scene. Speech was recorded and analysed off line. Differences in brain activity for each condition compared to a silent resting baseline and between conditions were analysed for each group separately (cluster-forming threshold Z > 3.1, extent p < 0.05, corrected) and then these differences were further compared between the two groups (voxel threshold p < 0.01, extent > 30 voxels, uncorrected). Results In both conditions, the patterns of activation in adults who clutter and control speakers were strikingly similar, particularly at the cortical level. Direct group comparisons revealed greater activity in adults who clutter compared to control speakers in the lateral premotor cortex bilaterally and, as predicted, on the medial surface (pre-supplementary motor area). Subcortically, adults who clutter showed greater activity than control speakers in the basal ganglia. Specifically, the caudate nucleus and putamen were overactive in adults who clutter for the comparison of picture description with sentence reading. In addition, adults who clutter had reduced activity relative to control speakers in the lateral anterior cerebellum bilaterally. Eleven of the 17 adults who clutter also stuttered. This comorbid diagnosis of stuttering was found to contribute to the abnormal overactivity seen in the group of adults who clutter in the right ventral premotor cortex and right anterior cingulate cortex. In the remaining areas of abnormal activity seen in adults who clutter compared to controls, the subgroup who clutter and stutter did not differ from the subgroup who clutter but do not stutter. Conclusions Our findings were in good agreement with theoretical predictions regarding the neural correlates of cluttering. We found evidence for abnormal function in the basal ganglia and their cortical output target, the medial prefrontal cortex. The findings are discussed in relation to models of cluttering that point to problems with motor control of speech.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tremor arises from an involuntary, rhythmic muscle contraction/relaxation cycle and is a common disabling symptom of many motor-related diseases such as Parkinson disease, multiple sclerosis, Huntington disease, and forms of ataxia. In the wake of anecdotal, largely uncontrolled, observations claiming the amelioration of some symptoms among cannabis smokers, and the high density of cannabinoid receptors in the areas responsible for motor function, including basal ganglia and cerebellum, many researchers have pursued the question of whether cannabinoid-based compounds could be used therapeutically to alleviate tremor associated with central nervous system diseases. In this review, we focus on possible effects of cannabinoid-based medicines, in particular on Parkinsonian and multiple sclerosis-related tremors and the common probable molecular mechanisms. While, at present, inconclusive results have been obtained, future investigations should extend preclinical studies with different cannabinoids to controlled clinical trials to determine potential benefits in tremor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Serotonin is under-researched in attention deficit hyperactivity disorder (ADHD), despite accumulating evidence for its involvement in impulsiveness and the disorder. Serotonin further modulates temporal discounting (TD), which is typically abnormal in ADHD relative to healthy subjects, underpinned by reduced fronto-striato-limbic activation. This study tested whether a single acute dose of the selective serotonin reuptake inhibitor (SSRI) fluoxetine up-regulates and normalizes reduced fronto-striato-limbic neurofunctional activation in ADHD during TD. Method Twelve boys with ADHD were scanned twice in a placebo-controlled randomized design under either fluoxetine (between 8 and 15 mg, titrated to weight) or placebo while performing an individually adjusted functional magnetic resonance imaging TD task. Twenty healthy controls were scanned once. Brain activation was compared in patients under either drug condition and compared to controls to test for normalization effects. Results Repeated-measures whole-brain analysis in patients revealed significant up-regulation with fluoxetine in a large cluster comprising right inferior frontal cortex, insula, premotor cortex and basal ganglia, which further correlated trend-wise with TD performance, which was impaired relative to controls under placebo, but normalized under fluoxetine. Fluoxetine further down-regulated default mode areas of posterior cingulate and precuneus. Comparisons between controls and patients under either drug condition revealed normalization with fluoxetine in right premotor-insular-parietal activation, which was reduced in patients under placebo. Conclusions The findings show that a serotonin agonist up-regulates activation in typical ADHD dysfunctional areas in right inferior frontal cortex, insula and striatum as well as down-regulating default mode network regions in the context of impulsivity and TD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the vertebrate brain, the thalamus serves as a relay and integration station for diverse neuronal information en route from the periphery to the cortex. Deficiency of TH during development results in severe cerebral abnormalities similar to those seen in the mouse when the retinoic acid receptor (ROR)α gene is disrupted. To investigate the effect of the thyroid hormone recep-tors (TRs) on RORalpha gene expression, we used intact male mice, in which the genes encoding the α and beta TRs have been deleted. In situ hybridization for RORalpha mRNA revealed that this gene is expressed in specific areas of the brain including the thalamus, pons, cerebellum, cortex, and hippocampus. Our quantitative data showed differences in RORalpha mRNA expression in different subthalamic nuclei between wild-type and knock-out mice. For example, the centromedial nucleus of the thalamus, which plays a role in mediating nociceptive and visceral information from the brainstem to the basal ganglia and cortical regions, has less expression of RORalpha mRNA in the knockout mice (-37%) compared to the wild-type controls. Also, in the dorsal geniculate (+72%) and lateral posterior nuclei (+58%) we found more RORalpha mRNA in dKO as compared to dWT animals. Such differences in RORalpha mRNA expression may play a role in the behavioral alterations resulting from congenital hypothyroidism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rats with unilateral lesion of the substantia nigra pars compacta (SNpc) have been used as a model of Parkinson`s disease. Depending on the lesion protocol and on the drug challenge, these rats rotate in opposite directions. The aim of the present study was to propose a model to explain how critical factors determine the direction of these turns. Unilateral lesion of the SNpc was induced with 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Separate analysis showed that neither the type of neurotoxin nor the site of lesion along the nigrostriatal. pathway was able to predict the direction of the turns these rats made after they were challenged with apomorphine. However, the combination of these two factors determined the magnitude of the lesion estimated by tyrosine-hydroxylase immunohistochemistry and HPLC-ED measurement of striatal dopamine. Very small lesions did Dot cause turns, medium-size lesions caused ipsiversive turns, and large lesions caused contraversive turns. Large-size SNpc lesions resulted in an increased binding of [H-3] raclopride to D2 receptors, while medium-size lesions reduced the binding of [H-3]SCH-23390 D1 receptors in the ipsilateral striatum. These results are coherent with the model proposing that after challenged with a dopamine receptor agonist, unilaterally SNpc-lesioned rats rotate toward the side with the weaker activation of dopamine receptors. This activation is weaker on the lesioned side in animals with small SNpc lesions due to the loss of dopamine, but stronger in animals with large lesions due to dopamine receptor supersensitivity. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to analyze the plastic effects of moderate exercise upon the motor cortex (M1 and M2 areas), cerebellum (Cb), and striatum (CPu) of the rat brain This assessment was made by verifying the expression of AMPA type glutamate receptor subunits (GluR1 and GluR2/3) We used adult Wistar rats, divided into 5 groups based on duration of exercise training, namely 3 days (EX3), 7 days (EX7) 15 days (EX15) 30 days (EX30), and sedentary (S) The exercised animals were subjected to a treadmill exercise protocol at the speed of the 10 meters/min for 40 mm After exercise, the brains were subjected to immunohistochemistry and immunoblotting to analyze changes of GluR1 and GluR2/3, and plasma cortcosterone was measured by ELISA in order to verify potential stress induced by physical training Overall the results of immunohistochemistry and immunoblotting were similar and revealed that GluR subunits show distinct responses over the exercise periods and for the different structures analyzed In general, there was increased expression of GluR subunits after longer exercise periods (such as EX30) although some opposite effects were seen after short periods of exercise (Ex3) In a few cases biphasic patterns with decreases and subsequent increases of GluR expression were seen and may represent the outcome of exercise dependent, complex regulatory processes The data show that the protocol used was able to promote plastic GluR changes during exercise, suggesting a specific involvement of these receptors in exercise induced plasticity processes in the brain areas tested (C) 2010 Elsevier B V All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combining the results of behavioral, neuronal immediate early gene activation, lesion and neuroanatomical experiments, we have presently investigated the role of the superior colliculus (SC) in predatory hunting. First, we have shown that insect hunting is associated with a characteristic large increase in Fos expression in the lateral part of the intermediate gray layer of the SC (Wig). Next, we have shown that animals with bilateral NMDA lesions of the lateral parts of the SC presented a significant delay in starting to chase the prey and longer periods engaged in other activities than predatory hunting. They also showed a clear deficit to orient themselves toward the moving prey and lost the stereotyped sequence of actions seen for capturing, holding and killing the prey. Our Phaseolus vulgaris-leucoagglutinin analysis revealed that the lateral SCig, besides providing the well-documented descending crossed pathway to premotor sites in brainstem and spinal cord, projects to a number of midbrain and diencephalic sites likely to influence key functions in the context of the predatory behavior, such as general levels of arousal, motivational level to hunt or forage, behavioral planning, appropriate selection of the basal ganglia motor plan to hunt, and motor output of the primary motor cortex. In contrast to the lateral SC lesions, medial SC lesions produced a small deficit in predatory hunting, and compared to what we have seen for the lateral SCig, the medial SCig has a very limited set of projections to thalamic sites related to the control of motor planning or motor output, and provides conspicuous inputs to brainstem sites involved in organizing a wide range of anti-predatory defensive responses. Overall, the present results served to clarify how the different functional domains in the SC may mediate the decision to pursue and hunt a prey or escape from a predator. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ventral tegmental area (VTA) is a nodal link in reward circuitry. Based on its striatal output, it has been subdivided in a caudomedial part which targets the ventromedial striatum, and a lateral part which targets the ventrolateral striatum [Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27-78]. Whether these two VTA parts are interconnected and to what extent the VTA innervates the substantia nigra compacta (SNc) and retrorubral nucleus (RR) are critical issues for understanding information processing in the basal ganglia. Here, VTA projections to the VTA-nigral complex were examined in rats, using Phaseolus vulgaris leucoagglutinin (PHA-L) as anterograde tracer. The results show that the dorsolateral VTA projects to itself, as well as to the dorsal tier of the SNc and RR, largely avoiding the caudomedial VTA. The ventrolateral VTA innervates mainly the interfascicular nucleus. The components of the caudomedial VTA (the interfascicular, paranigral and caudal linear nuclei) are connected with each other. In addition, the caudomedial VTA (especially the paranigral and caudal linear nuclei) innervates the lateral VTA, and, to a lesser degree, the SNc and RR. The caudal pole of the VTA sends robust, bilateral projections to virtually all the VTA-nigral complex, which terminate in the dorsal and ventral tiers. Modest inputs from the medial supramammillary nucleus to ventromedial parts of the VTA-nigral complex were also identified. In double-immunostained sections, PHA-L-labeled varicosities were sometimes found apposed to tyrosine hydroxylase-positive neurons in the ventral mesencephalon. Overall, the results underscore that VTA projections to the VTA-nigral complex are substantial and topically organized. In general, these projections, like the spiralated striato-nigro-striatal loops, display a medial-to-lateral organization. This anatomical arrangement conceivably permits the ventromedial striatum to influence the activity of the lateral striatum. The caudal pole of the VTA appears to be a critical site for a global recruitment of the mesotelencephalic system. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methylmalonic acidemia is one of the most prevalent inherited metabolic disorders involving neurological deficits. In vitro experiments, animal model studies and tissue analyses from human patients suggest extensive impairment of mitochondrial energy metabolism in this disease. This review summarizes changes in mitochondrial energy metabolism occurring in methylmalonic acidemia, focusing mainly on the effects of accumulated methylmalonic acid, and gives an overview of the results found in different experimental models. Overall, experiments to date suggest that mitochondrial impairment in this disease occurs through a combination of the inhibition of specific enzymes and transporters, limitation in the availability of substrates for mitochondrial metabolic pathways and oxidative damage.