867 resultados para Bankruptcy prediction methods


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Assessing the fit of a model is an important final step in any statistical analysis, but this is not straightforward when complex discrete response models are used. Cross validation and posterior predictions have been suggested as methods to aid model criticism. In this paper a comparison is made between four methods of model predictive assessment in the context of a three level logistic regression model for clinical mastitis in dairy cattle; cross validation, a prediction using the full posterior predictive distribution and two “mixed” predictive methods that incorporate higher level random effects simulated from the underlying model distribution. Cross validation is considered a gold standard method but is computationally intensive and thus a comparison is made between posterior predictive assessments and cross validation. The analyses revealed that mixed prediction methods produced results close to cross validation whilst the full posterior predictive assessment gave predictions that were over-optimistic (closer to the observed disease rates) compared with cross validation. A mixed prediction method that simulated random effects from both higher levels was best at identifying the outlying level two (farm-year) units of interest. It is concluded that this mixed prediction method, simulating random effects from both higher levels, is straightforward and may be of value in model criticism of multilevel logistic regression, a technique commonly used for animal health data with a hierarchical structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Power efficiency is one of the most important constraints in the design of embedded systems since such systems are generally driven by batteries with limited energy budget or restricted power supply. In every embedded system, there are one or more processor cores to run the software and interact with the other hardware components of the system. The power consumption of the processor core(s) has an important impact on the total power dissipated in the system. Hence, the processor power optimization is crucial in satisfying the power consumption constraints, and developing low-power embedded systems. A key aspect of research in processor power optimization and management is “power estimation”. Having a fast and accurate method for processor power estimation at design time helps the designer to explore a large space of design possibilities, to make the optimal choices for developing a power efficient processor. Likewise, understanding the processor power dissipation behaviour of a specific software/application is the key for choosing appropriate algorithms in order to write power efficient software. Simulation-based methods for measuring the processor power achieve very high accuracy, but are available only late in the design process, and are often quite slow. Therefore, the need has arisen for faster, higher-level power prediction methods that allow the system designer to explore many alternatives for developing powerefficient hardware and software. The aim of this thesis is to present fast and high-level power models for the prediction of processor power consumption. Power predictability in this work is achieved in two ways: first, using a design method to develop power predictable circuits; second, analysing the power of the functions in the code which repeat during execution, then building the power model based on average number of repetitions. In the first case, a design method called Asynchronous Charge Sharing Logic (ACSL) is used to implement the Arithmetic Logic Unit (ALU) for the 8051 microcontroller. The ACSL circuits are power predictable due to the independency of their power consumption to the input data. Based on this property, a fast prediction method is presented to estimate the power of ALU by analysing the software program, and extracting the number of ALU-related instructions. This method achieves less than 1% error in power estimation and more than 100 times speedup in comparison to conventional simulation-based methods. In the second case, an average-case processor energy model is developed for the Insertion sort algorithm based on the number of comparisons that take place in the execution of the algorithm. The average number of comparisons is calculated using a high level methodology called MOdular Quantitative Analysis (MOQA). The parameters of the energy model are measured for the LEON3 processor core, but the model is general and can be used for any processor. The model has been validated through the power measurement experiments, and offers high accuracy and orders of magnitude speedup over the simulation-based method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Corrosion is a common phenomenon and critical aspects of steel structural application. It affects the daily design, inspection and maintenance in structural engineering, especially for the heavy and complex industrial applications, where the steel structures are subjected to hash corrosive environments in combination of high working stress condition and often in open field and/or under high temperature production environments. In the paper, it presents the actual engineering application of advanced finite element methods in the predication of the structural integrity and robustness at a designed service life for the furnaces of alumina production, which was operated in the high temperature, corrosive environments and rotating with high working stress condition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Further improvement in performance, to achieve near transparent quality LSF quantization, is shown to be possible by using a higher order two dimensional (2-D) prediction in the coefficient domain. The prediction is performed in a closed-loop manner so that the LSF reconstruction error is the same as the quantization error of the prediction residual. We show that an optimum 2-D predictor, exploiting both inter-frame and intra-frame correlations, performs better than existing predictive methods. Computationally efficient split vector quantization technique is used to implement the proposed 2-D prediction based method. We show further improvement in performance by using weighted Euclidean distance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The past several years have seen significant advances in the development of computational methods for the prediction of the structure and interactions of coiled-coil peptides. These methods are generally based on pairwise correlations of amino acids, helical propensity, thermal melts and the energetics of sidechain interactions, as well as statistical patterns based on Hidden Markov Model (HMM) and Support Vector Machine (SVM) techniques. These methods are complemented by a number of public databases that contain sequences, motifs, domains and other details of coiled-coil structures identified by various algorithms. Some of these computational methods have been developed to make predictions of coiled-coil structure on the basis of sequence information; however, structural predictions of the oligomerisation state of these peptides still remains largely an open question due to the dynamic behaviour of these molecules. This review focuses on existing in silico methods for the prediction of coiled-coil peptides of functional importance using sequence and/or three-dimensional structural data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modern-day weather forecasting is highly dependent on Numerical Weather Prediction (NWP) models as the main data source. The evolving state of the atmosphere with time can be numerically predicted by solving a set of hydrodynamic equations, if the initial state is known. However, such a modelling approach always contains approximations that by and large depend on the purpose of use and resolution of the models. Present-day NWP systems operate with horizontal model resolutions in the range from about 40 km to 10 km. Recently, the aim has been to reach operationally to scales of 1 4 km. This requires less approximations in the model equations, more complex treatment of physical processes and, furthermore, more computing power. This thesis concentrates on the physical parameterization methods used in high-resolution NWP models. The main emphasis is on the validation of the grid-size-dependent convection parameterization in the High Resolution Limited Area Model (HIRLAM) and on a comprehensive intercomparison of radiative-flux parameterizations. In addition, the problems related to wind prediction near the coastline are addressed with high-resolution meso-scale models. The grid-size-dependent convection parameterization is clearly beneficial for NWP models operating with a dense grid. Results show that the current convection scheme in HIRLAM is still applicable down to a 5.6 km grid size. However, with further improved model resolution, the tendency of the model to overestimate strong precipitation intensities increases in all the experiment runs. For the clear-sky longwave radiation parameterization, schemes used in NWP-models provide much better results in comparison with simple empirical schemes. On the other hand, for the shortwave part of the spectrum, the empirical schemes are more competitive for producing fairly accurate surface fluxes. Overall, even the complex radiation parameterization schemes used in NWP-models seem to be slightly too transparent for both long- and shortwave radiation in clear-sky conditions. For cloudy conditions, simple cloud correction functions are tested. In case of longwave radiation, the empirical cloud correction methods provide rather accurate results, whereas for shortwave radiation the benefit is only marginal. Idealised high-resolution two-dimensional meso-scale model experiments suggest that the reason for the observed formation of the afternoon low level jet (LLJ) over the Gulf of Finland is an inertial oscillation mechanism, when the large-scale flow is from the south-east or west directions. The LLJ is further enhanced by the sea-breeze circulation. A three-dimensional HIRLAM experiment, with a 7.7 km grid size, is able to generate a similar LLJ flow structure as suggested by the 2D-experiments and observations. It is also pointed out that improved model resolution does not necessary lead to better wind forecasts in the statistical sense. In nested systems, the quality of the large-scale host model is really important, especially if the inner meso-scale model domain is small.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis report attempts to improve the models for predicting forest stand structure for practical use, e.g. forest management planning (FMP) purposes in Finland. Comparisons were made between Weibull and Johnson s SB distribution and alternative regression estimation methods. Data used for preliminary studies was local but the final models were based on representative data. Models were validated mainly in terms of bias and RMSE in the main stand characteristics (e.g. volume) using independent data. The bivariate SBB distribution model was used to mimic realistic variations in tree dimensions by including within-diameter-class height variation. Using the traditional method, diameter distribution with the expected height resulted in reduced height variation, whereas the alternative bivariate method utilized the error-term of the height model. The lack of models for FMP was covered to some extent by the models for peatland and juvenile stands. The validation of these models showed that the more sophisticated regression estimation methods provided slightly improved accuracy. A flexible prediction and application for stand structure consisted of seemingly unrelated regression models for eight stand characteristics, the parameters of three optional distributions and Näslund s height curve. The cross-model covariance structure was used for linear prediction application, in which the expected values of the models were calibrated with the known stand characteristics. This provided a framework to validate the optional distributions and the optional set of stand characteristics. Height distribution is recommended for the earliest state of stands because of its continuous feature. From the mean height of about 4 m, Weibull dbh-frequency distribution is recommended in young stands if the input variables consist of arithmetic stand characteristics. In advanced stands, basal area-dbh distribution models are recommended. Näslund s height curve proved useful. Some efficient transformations of stand characteristics are introduced, e.g. the shape index, which combined the basal area, the stem number and the median diameter. Shape index enabled SB model for peatland stands to detect large variation in stand densities. This model also demonstrated reasonable behaviour for stands in mineral soils.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

NDDO-based (AM1) configuration interaction (CI) calculations have been used to calculate the wavelength and oscillator strengths of electronic absorptions in organic molecules and the results used in a sum-over-states treatment to calculate second-order-hyperpolarizabilities. The results for both spectra and hyperpolarizabilities are of acceptable quality as long as a suitable CI-expansion is used. We have found that using an active space of eight electrons in eight orbitals and including all single and pair-double excitations in the CI leads to results that agree well with experiment and that do not change significantly with increasing active space for most organic molecules. Calculated second-order hyperpolarizabilities using this type of CI within a sum-over-states calculation appear to be of useful accuracy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The pressure oscillation within combustion chambers of aeroengines and industrial gas turbines is a major technical challenge to the development of high-performance and low-emission propulsion systems. In this paper, an approach integrating computational fluid dynamics and one-dimensional linear stability analysis is developed to predict the modes of oscillation in a combustor and their frequencies and growth rates. Linear acoustic theory was used to describe the acoustic waves propagating upstream and downstream of the combustion zone, which enables the computational fluid dynamics calculation to be efficiently concentrated on the combustion zone. A combustion oscillation was found to occur with its predicted frequency in agreement with experimental measurements. Furthermore, results from the computational fluid dynamics calculation provide the flame transfer function to describe unsteady heat release rate. Departures from ideal one-dimensional flows are described by shape factors. Combined with this information, low-order models can work out the possible oscillation modes and their initial growth rates. The approach developed here can be used in more general situations for the analysis of combustion oscillations. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Smart management of maintenances has become fundamental in manufacturing environments in order to decrease downtime and costs associated with failures. Predictive Maintenance (PdM) systems based on Machine Learning (ML) techniques have the possibility with low added costs of drastically decrease failures-related expenses; given the increase of availability of data and capabilities of ML tools, PdM systems are becoming really popular, especially in semiconductor manufacturing. A PdM module based on Classification methods is presented here for the prediction of integral type faults that are related to machine usage and stress of equipment parts. The module has been applied to an important class of semiconductor processes, ion-implantation, for the prediction of ion-source tungsten filament breaks. The PdM has been tested on a real production dataset. © 2013 IEEE.