958 resultados para Bank of California.
Resumo:
Though migration is an age-old feature of human activity, driven by various circumstances, its current place in the midst of global dynamics and the phenomenon of globalization is becoming increasingly critical. International immigration and its regulation have been largely shaped by the policies in the receiving countries, often determining preferences for nationality cohorts and work skills to satisfy their labor and human capital requirements. When immigration has been necessitated by political strife, host countries have displayed immense magnanimity as well. However, the growing realization of resource limitations and the strange quirks of cultural pluralism are in turn creating waves of dissonance. Literature and the media are now replete with an in depth look into the immigration debate in various nations of the world in trying to seek new directions and satisfactory solutions.
Resumo:
The staid Union Bank of Switzerland, in a very close vote, won the support of its shareholders in its battle against an attempt by dissidents to guide the way the nation's biggest bank is run. The special shareholder vote, held in a packed Zurich sports hall, was one of the most keenly awaited events in recent Swiss financial histroy. The Wall Street Journal, November 23, 1994
Resumo:
Ernst Davis
Resumo:
High-resolution records of the nitrogen isotopic composition of organic matter (d15Norg), opal content, and opal accumulation rates from the central Gulf of California reveal large and abrupt variations during deglaciation and gradual Holocene changes coincident with climatic changes recorded in the North Atlantic. Homogenous sediments with relatively low d15Norg values and low opal content were deposited at the end of the last glacial period, during the Younger-Dryas event, and during the middle to late Holocene. In contrast, laminated sediments deposited in the two deglacial stages are characterized by very high d15Norg values (>14 per mil) and opal accumulation rates (29-41 mg/cm**2/yr). Abrupt shifts in d15Norg were driven by widespread changes in the extent of suboxic subsurface waters supporting denitrification and were amplified in the central gulf record due to variations in upwelling, vertical mixing, and/or the latitudinal position of the Intertropical Convergence Zone.
Resumo:
Abundances of globules, micronodules and their aggregates composed of iron sulfides from bottom sediments of the Gulf of California have been determined together with studies of chemical composition of these sediments.
Resumo:
Deep Sea Drilling Project Site 480 (27°54.10'N, 111°39.34'W; 655 m water depth) contains a high resolution record of paleoceanographic change of the past 15000 years for the Guaymas Basin, a region of very high diatom productivity within the central Gulf of California. Analyses of diatoms and silicoflagellates were completed on samples spaced every 40-50 yr, whereas ICP-AES geochemical analyses were completed on alternate samples (sample spacing 80-100 yr). The Bolling-Allerod interval (14.6-12.9 ka) (note, ka refers to 1000 calendar years BP throughout this report) is characterized by an increase in biogenic silica and a decline in calcium carbonate relative to surrounding intervals, suggesting conditions somewhat similar to those of today. The Younger Dryas event (12.9-11.6 ka) is marked by a major drop in biogenic silica and an increase in calcium carbonate. Increasing relative percentage contributions of Azpeitia nodulifera and Dictyocha perlaevis (a tropical diatom and silicoflagellate, respectively) and reduced numbers of the silicoflagellate Octactis pulchra are supportive of reduced upwelling of nutrient-rich waters. Between 10.6 and 10.0 ka, calcium carbonate and A. nodulifera abruptly decline at DSDP 480, while Roperia tesselata, a diatom indicative of winter upwelling in the modern-day Gulf, increases sharply in numbers. A nearly coincident increase in the silicoflagellate Dictyocha stapedia suggests that waters above DSDP 480 were more similar to the cooler and slightly more saline waters of the northern Gulf during much of the early and middle parts of the Holocene (~10 to 3.2 ka). At about 6.2 ka a stepwise increase in biogenic silica and the reappearance of the tropical diatom A. nodulifera marks a major change in oceanographic conditions in the Gulf. A winter shift to more northwesterly winds may have occurred at this time along with the onset of periodic northward excursions (El Nino-driven?) of the North Equatorial Countercurrent during the summer. Beginning between 2.8 and 2.4 ka, the amplitude of biogenic silica and wt% Fe, Al, and Ti (proxies of terrigenous input) increase, possibly reflecting intensification of ENSO cycles and the establishment of modern oceanographic conditions in the Gulf. Increased numbers of O. pulchra after 2.8 ka suggest enhanced spring upwelling.
Resumo:
I recovered well-preserved radiolarian assemblages from the Quaternary sediments drilled at all four sites at the mouth of the Gulf of California during Leg 65. The sites, with positions and water depths averaged for all hole locations per site, are Site 482 - 22°47.4'N, 107°59.6'W; water depth, 3022 meters. Site 483 - 22°53.0'N, 108°44.8' W; water depth, 3070 meters. Site 484 - 23°11.2'N, 108°23.6'W; water depth, 2887 meters. Site 485 - 22°44.9'N, 107°54.2'W; water depth, 2981 meters. The nearly 200 taxa I identified are listed alphabetically in the systematic reference list. The only reliable radiolarian biostratigraphic datum determined for the Quaternary sedimentary section is the highest occurrence of Axoprunum angelinum (Hays) at Sites 483, 484, and 485.
Resumo:
The effects of intrusive thermal stress have been studied on a number of Pleistocene sediment samples obtained from Leg 64 of the DSDP-IPOD program in the Gulf of California. Samples were selected from Sites 477, 478 and 481 where the organic matter was subjected to thermal stress from sill intrusions. For comparison purposes, samples from Sites 474 and 479 were selected as representative of unaltered material. The GC and GC-MS data show that lipids of the thermally unaltered samples were derived from microbial and terrestrial higher-plant detritus. Samples from sill proximities were found to contain thermally-derived distillates and those adjacent to sills contained essentially no lipids. Curie point pyrolysis combined with GC and GC-MS was used to show that kerogens from the unaltered samples reflected their predominantly autochthonous microbial origin. Pyrograms of the altered kerogens were much less complex than the unaltered samples, reflecting the thermal effects. The kerogens adjacent to the sills produce little or no pyrolysis products since these intrusions into unconsolidated, wet sediments resulted in in situ pyrolysis of the organic matter. Examination of the kerogens by ESR showed that spin density and line width pass through a maximum during the course of alteration but ESR g-values show no correlation with maturity. Stable carbon isotope (d13C) values of kerogens decrease by 1-1.5 per mil near the sills at Sites 477 and 481 and the atomic N/C decreases slightly with proximity to a smaller sill at Site 478. Differences in maturation behavior between Site 477 and 481 and Site 478 are attributed to dissimilarities in thermal stress and to chemical and isotopic heterogeneity of Guaymas Basin protokerogen.
Resumo:
Results of mineralogical and isotopic analyzes of sulfur and carbon in carbonate nodules and host bottom sediments and results of 14C measurement in carbonate nodules are reported. It is proved that the carbonate nodules formed 11-22 thousand years ago in anaerobic diagenesis of bottom sediments rich in organic matter. Isotopic light metabolic carbon dioxide was a source of carbonate for nodules. It formed during microbial degradation of organic matter of bottom sediments.
Resumo:
A series of samples of inhabitants of hydrothermal vents were collected during the 12-th cruise of R/V Akademik Mstislav Keldysh in Guaymas Basin (the Gulf of California) and the Axial Seamount area (Juan de Fuca Ridge). Concentrations of trace and heavy metals in the tissues of Ridgeia piscesae, Riftia pachyptila, and Paralvinella palmiformis were analyzed. Neutron-activation analysis revealed significantly higher concentrations of uranium in tissues of Paralvinella palmiformis as compared to ambient seawater. Possible reasons for such phenomenon are discussed. The data obtained by neutron-activation method are compared with those obtained by atomic-absorption method for the same tissues analyzed.
Resumo:
The book is devoted to study of diagenetic changes of organic matter and mineral part of sediments and interstitial waters of the Pacific Ocean due to physical-chemical and microbiological processes. Microbiological studies deal with different groups of bacteria. Regularities of quantitative distribution and the role of microorganisms in geochemical processes are under consideration. Geochemical studies highlight redox processes of the early stages of sediment diagenesis, alterations of interstitial waters, regularities of variations in chemical composition of iron-manganese nodules.
Resumo:
Results and discussion cover pigment analyses of 36 sediment samples recovered by Deep Sea Drilling Project Leg 64, and six samples from the Leg 64 site-survey cruise in the Guaymas Basin (Scripps Institution of Oceanography, Leg 3). Pigments investigated were tetrapyrroles, tetraterpenoids, and the PAH compound perylene. Traces of mixed nickel and copper ETIO-porphyrins were ubiquitous in all sediment samples, except for the very surface (i.e., <2 m sub-bottom), and their presence is taken as an indication of minor influxes of previously oxidized allochthonous (terrestrial) organic matter. Phorbides and chlorins isolated from Site 479 sediment samples (i.e., the oxygen-minimum locale, northeast of the Guaymas Basin) well represent the reductive diagenesis ("Treibs Scheme"; see Baker and Palmer, 1978; Treibs, 1936) of chlorophyll derivatives. Three forms of pheophytin-a, plus a variety of phorbides, were found to give rise to freebase porphyrins, nickel phylloerythrin, and nickel porphyrins, with increasing depth of burial (increasing temperature). Sediments from Sites 481, 10G, and 18G yielded chlorophyll derivatives characteristic of early oxidative alterations. Included among these pigments are allomerized pheophytin-a, purpurin-18, and chlorin-p6. The high thermal gradient imposed upon the late Quaternary sediments of Site 477 greatly accelerated chlorophyll diagenesis in the adjacent overlying sediments, that is, the production of large quantities of free-base desoxophylloerythroetioporphyrin (DPEP) occurred in a section (477-7-5) presently only 49.8 meters sub-bottom. Present depth and age of these sediments are such that only chlorins and phorbides would be expected. Carotenoid (i.e., tetraterpenoids) concentrations were found to decrease rapidly with increasing sub-bottom depth. Less deeply buried sediments (e.g., 0-30 m) yielded mixtures of carotenes and oxygen-substituted carotenoids. Oxygencontaining (oxy-, oxo-, epoxy-) carotenoids were found to be lost preferentially with increased depth of burial. Early carotenoid diagenesis is suggested as involving interacting reductions and dehydrations whereby dehydro-, didehydro-, and retro-carotenes are generated. Destruction of carotenoids as pigments may involve oxidative cleavage of the isoprenoid chain through epoxy intermediates, akin to changes in the senescent cells of plants. Perylene was found to be a common component of the extractable organic matter from all sediments investigated. The generation of alkyl perylenes was found to parallel increases in the existing thermal regime at all sites. Igneous sills and sill complexes within the sediment profile of Site 481 altered (i.e., scrambled) the otherwise straightforward thermally induced alkylation of perylene. The degree of perylene alkylation is proposed as an indicator of geothermal stress for non-contemporaneous marine sediments.
Resumo:
The book is devoted to study of diagenetic changes of organic matter and mineral part of sediments and interstitial waters of the Pacific Ocean due to physical-chemical and microbiological processes. Microbiological studies deal with different groups of bacteria. Regularities of quantitative distribution and the role of microorganisms in geochemical processes are under consideration. Geochemical studies highlight redox processes of the early stages of sediment diagenesis, alterations of interstitial waters, regularities of variations in chemical composition of iron-manganese nodules.