988 resultados para Balneario de Luyando (Álava).


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two analytical models are proposed to describe two different mechanisms of lava tubes formation. A first model is introduced to describe the development of a solid crust in the central region of the channel, and the formation of a tube when crust widens until it reaches the leve\'es. The Newtonian assumption is considered and the steady state Navier- Stokes equation in a rectangular conduit is solved. A constant heat flux density assigned at the upper flow surface resumes the combined effects of two thermal processes: radiation and convection into the atmosphere. Advective terms are also included, by the introduction of velocity into the expression of temperature. Velocity is calculated as an average value over the channel width, so that lateral variations of temperature are neglected. As long as the upper flow surface cools, a solid layer develops, described as a plastic body, having a resistance to shear deformation. If the applied shear stress exceeds this resistance, crust breaks, otherwise, solid fragments present at the flow surface can weld together forming a continuous roof, as it happens in the sidewall flow regions. Variations of channel width, ground slope and effusion rate are analyzed, as parameters that strongly affect the shear stress values. Crust growing is favored when the channel widens, and tube formation is possible when the ground slope or the effusion rate reduce. A comparison of results is successfully made with data obtained from the analysis of pictures of actual flows. The second model describes the formation of a stable, well defined crust along both channel sides, their growing towards the center and their welding to form the tube roof. The fluid motion is described as in the model above. Thermal budget takes into account conduction into the atmosphere, and advection is included considering the velocity depending both on depth and channel width. The solidified crust has a non uniform thickness along the channel width. Stresses acting on the crust are calculated using the equations of the elastic thin plate, pinned at its ends. The model allows to calculate the distance where crust thickness is able to resist the drag of the underlying fluid and to sustain its weight by itself, and the level of the fluid can lower below the tube roof. Viscosity and thermal conductivity have been experimentally investigated through the use of a rotational viscosimeter. Analyzing samples coming from Mount Etna (2002) the following results have been obtained: the fluid is Newtonian and the thermal conductivity is constant in a range of temperature above the liquidus. For lower temperature, the fluid becomes non homogeneous, and the used experimental techniques are not able to detect any properties, because measurements are not reproducible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on the evolution of geomagnetic paleointensity are crucial for understanding the geodynamo and Earth’s thermal history. Although basaltic flows are preferred for paleointensity experiments, quickly cooled mafic dykes have also been used. However, the paleointensity values obtained from the dykes are systematically lower than those from lava flows. This bias may originate from the difference in cooling histories and resultant magnetic mineralogies of extrusive and intrusive rocks. To explore this hypothesis, the magnetic mineralogy of two feeder dyke-lave flow systems, from Thunder Bay (Canada) and La Cienega (New-Mexico), has been studied using magnetic and microscopy methods. Within each system, the flow and dyke show different stages of deuteric oxidation of titanomagnetite, but the oxidation stages also differ between the two systems. It is concluded that the tested hypothesis is viable, but the relationships between the magnetic and mineralogical properties of flows and dykes are complex and need a further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-averaged discharge rates (TADR) were calculated for five lava flows at Pacaya Volcano (Guatemala), using an adapted version of a previously developed satellite-based model. Imagery acquired during periods of effusive activity between the years 2000 and 2010 were obtained from two sensors of differing temporal and spatial resolutions; the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Geostationary Operational Environmental Satellites (GOES) Imager. A total of 2873 MODIS and 2642 GOES images were searched manually for volcanic “hot spots”. It was found that MODIS imagery, with superior spatial resolution, produced better results than GOES imagery, so only MODIS data were used for quantitative analyses. Spectral radiances were transformed into TADR via two methods; first, by best-fitting some of the parameters (i.e. density, vesicularity, crystal content, temperature change) of the TADR estimation model to match flow volumes previously estimated from ground surveys and aerial photographs, and second by measuring those parameters from lava samples to make independent estimates. A relatively stable relationship was defined using the second method, which suggests the possibility of estimating lava discharge rates in near-real-time during future volcanic crises at Pacaya.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of their respective eruptive environments and chemical characteristics, alkalic dolerite sills from the northern Pigafetta Basin (Site 800) and tholeiitic pillow lavas from the Mariana Basin (Site 802) sampled during Ocean Drilling Program Leg 129 are considered to represent examples of the widespread mid-Cretaceous volcanic event in the western Pacific. Both groups of basic rocks feature mild, low-grade, anoxic smectite-celadonite-carbonate-pyrite alteration; late-stage oxidation is very limited in extent, with the exception of the uppermost sill unit at Site 800. The aphyric and nonvesicular Site 800 alkalic dolerite sills are all well-evolved mineralogically and chemically, being mainly of hawaiite composition, and are similar to ocean island basalts. They are characterized by high contents of incompatible elements (for example, 300-400 ppm Zr), well-fractionated rare earth element patterns ([La/Yb]N 18-21) and HIMU isotopic characters. They probably represent deep-sea, lateral, intrusive off-shoots from nearby seamounts of similar age. The olivine-plagioclase +/- clinopyroxene phyric tholeiitic pillow lavas and thin flows of Site 802 are nonvesicular and quench-textured throughout. Relative to normal-type mid-ocean ridge basalt, they are enriched in large-ion-lithophile elements, exhibit flat (unfractionated) rare earth element patterns and have distinctive (lower) Zr/Nb, Zr/Ta, La/Ta, and Hf/Th ratios. Overall they are compositionally and isotopically similar to the mid-Cretaceous tholeiites of the Nauru basin and the Ontong-Java and Manihiki plateaus. The Site 802 tholeiites differ from the thickened crustal segments of the oceanic plateaus, however, in apparently representing only a thin veneer over the local basement in an off-axis environment.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: