918 resultados para Balance of trade.
Resumo:
We investigate the question of how many facets are needed to represent the energy balance of an urban area by developing simplified 3-, 2- and 1-facet versions of a 4-facet energy balance model of two-dimensional streets and buildings. The 3-facet model simplifies the 4-facet model by averaging over the canyon orientation, which results in similar net shortwave and longwave balances for both wall facets, but maintains the asymmetry in the heat fluxes within the street canyon. For the 2-facet model, on the assumption that the wall and road temperatures are equal, the road and wall facets can be combined mathematically into a single street-canyon facet with effective values of the heat transfer coefficient, albedo, emissivity and thermodynamic properties, without further approximation. The 1-facet model requires the additional assumption that the roof temperature is also equal to the road and wall temperatures. Idealised simulations show that the geometry and material properties of the walls and road lead to a large heat capacity of the combined street canyon, whereas the roof behaves like a flat surface with low heat capacity. This means that the magnitude of the diurnal temperature variation of the street-canyon facets are broadly similar and much smaller than the diurnal temperature variation of the roof facets. Consequently, the approximation that the street-canyon facets have similar temperatures is sound, and the road and walls can be combined into a single facet. The roof behaves very differently and a separate roof facet is required. Consequently, the 2-facet model performs similarly to the 4-facet model, while the 1-facet model does not. The models are compared with previously published observations collected in Mexico City. Although the 3- and 2-facet models perform better than the 1-facet model, the present models are unable to represent the phase of the sensible heat flux. This result is consistent with previous model comparisons, and we argue that this feature of the data cannot be produced by a single column model. We conclude that a 2-facet model is necessary, and for numerical weather prediction sufficient, to model an urban surface, and that this conclusion is robust and therefore applicable to more general geometries.
Resumo:
The sensitivity of the upper ocean thermal balance of an ocean-atmosphere coupled GCM to lateral ocean physics is assessed. Three 40-year simulations are performed using horizontal mixing, isopycnal mixing, and isopycnal mixing plus eddy induced advection. The thermal adjustment of the coupled system is quite different between the simulations, confirming the major role of ocean mixing on the heat balance of climate. The initial adjustment phase of the upper ocean (SST) is used to diagnose the physical mechanisms involved in each parametrisation. When the lateral ocean physics is modified, significant changes of SST are seen, mainly in the southern ocean. A heat budget of the annual mixed layer (defined as the “bowl”) shows that these changes are due to a modified heat transfer between the bowl and the ocean interior. This modified heat intake of the ocean interior is directly due to the modified lateral ocean physics. In isopycnal diffusion, this heat exchange, especially marked at mid-latitudes, is both due to an increased effective surface of diffusion and to the sign of the isopycnal gradients of temperature at the base of the bowl. As this gradient is proportional to the isopycnal gradient of salinity, this confirms the strong role of salinity in the thermal balance of the coupled system. The eddy induced advection also leads to increased exchanges between the bowl and the ocean interior. This is both due to the shape of the bowl and again to the existence of a salinity structure. The lateral ocean physics is shown to be a significant contributor to the exchanges between the diabatic and the adiabatic parts of the ocean.
Resumo:
Question: What are the key physiological and life-history trade-offs responsible for the evolution of different suites of plant traits (strategies) in different environments? Experimental methods: Common-garden experiments were performed on physiologically realistic model plants, evolved in contrasting environments, in computer simulations. This allowed the identification of the trade-offs that resulted in different suites of traits (strategies). The environments considered were: resource rich, low disturbance (competitive); resource poor, low disturbance (stressed); resource rich, high disturbance (disturbed); and stressed environments containing herbivores (grazed). Results: In disturbed environments, plants increased reproduction at the expense of ability to compete for light and nitrogen. In competitive environments, plants traded off reproductive output and leaf production for vertical growth. In stressed environments, plants traded off vertical growth and reproductive output for nitrogen acquisition, contradicting Grime's (2001) theory that slow-growing, competitively inferior strategies are selected in stressed environments. The contradiction is partly resolved by incorporating herbivores into the stressed environment, which selects for increased investment in defence, at the expense of competitive ability and reproduction. Conclusion: Our explicit modelling of trade-offs produces rigorous testable explanations of observed associations between suites of traits and environments.
Resumo:
The Kodar Mountains in eastern Siberia accommodate 30 small, cold-based glaciers with a combined surface area of about 19 km2. Very little is known about these glaciers, with the first survey conducted in the late 1950s. In this paper, we use terrestrial photogrammetry to calculate changes in surface area, elevation, volume and geodetic mass balance of the Azarova Glacier between 1979 and 2007 and relate these to meteorological data from nearby Chara weather station (1938-2007). The glacier surface area declined by 20±6.9% and surface lowered on average by 20±1.8 m (mean thinning: 0.71 m a-1) resulting in a strongly negative cumulative and average mass balance of -18±1.6 m w.e. and -640±60 mm w.e.a-1 respectively. The July-August air temperature increased at a rate of 0.036oC a-1 between 1979 and 2007 and the 1980-2007 period was, on average, around 1oC warmer than 1938-1979. The regional climate projections for A2 and B2 CO2 emission scenarios developed using PRECIS regional climate model indicate that summer temperatures will increase in 2071–2100 by 2.6-4.7°C and 4.9-6.2°C respectively in comparison with 1961–1990. The annual total of solid precipitation will increase by 20% under B2 scenario but decline by 3% under A2 scenario. The length of the ablation season will extend from July–August to June-September. The Azarova Glacier exhibits high sensitivity to climatic warming due to its low elevation, exposure to comparatively high summer temperatures, and the absence of a compensating impact of cold season precipitation. Further summer warming and decline of solid precipitation projected under the A2 scenario will force Azarova to retreat further while impacts of an increase in solid precipitation projected under the B2 scenario require further investigation.
Resumo:
The retention of peatland carbon (C) and the ability to continue to draw down and store C from the atmosphere is not only important for the UK terrestrial carbon inventory, but also for a range of ecosystem services, the landscape value and the ecology and hydrology of ~15% of the land area of the UK. Here we review the current state of knowledge on the C balance of UK peatlands using several studies which highlight not only the importance of making good flux measurements, but also the spatial and temporal variability of different flux terms that characterise a landscape affected by a range of natural and anthropogenic processes and threats. Our data emphasise the importance of measuring (or accurately estimating) all components of the peatland C budget. We highlight the role of the aquatic pathway and suggest that fluxes are higher than previously thought. We also compare the contemporary C balance of several UK peatlands with historical rates of C accumulation measured using peat cores, thus providing a long-term context for present-day measurements and their natural year-on-year variability. Contemporary measurements from 2 sites suggest that current accumulation rates (–56 to –72 g C m–2 yr–1) are at the lower end of those seen over the last 150 yr in peat cores (–35 to –209 g C m–2 yr–1). Finally, we highlight significant current gaps in knowledge and identify where levels of uncertainty are high, as well as emphasise the research challenges that need to be addressed if we are to improve the measurement and prediction of change in the peatland C balance over future decades.
Resumo:
The observed decline in summer sea ice extent since the 1970s is predicted to continue until the Arctic Ocean is seasonally ice free during the 21st Century. This will lead to a much perturbed Arctic climate with large changes in ocean surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers and is expected to experience rapid warming over the 21st Century. The total sea level rise if all the land ice on Svalbard were to melt completely is 0.02 m. The purpose of this study is to quantify the impact of climate change on Svalbard’s surface mass balance (SMB) and to determine, in particular, what proportion of the projected changes in precipitation and SMB are a result of changes to the Arctic sea ice cover. To investigate this a regional climate model was forced with monthly mean climatologies of sea surface temperature (SST) and sea ice concentration for the periods 1961–1990 and 2061–2090 under two emission scenarios. In a novel forcing experiment, 20th Century SSTs and 21st Century sea ice were used to force one simulation to investigate the role of sea ice forcing. This experiment results in a 3.5 m water equivalent increase in Svalbard’s SMB compared to the present day. This is because over 50 % of the projected increase in winter precipitation over Svalbard under the A1B emissions scenario is due to an increase in lower atmosphere moisture content associated with evaporation from the ice free ocean. These results indicate that increases in precipitation due to sea ice decline may act to moderate mass loss from Svalbard’s glaciers due to future Arctic warming.
Resumo:
The Arctic is a region particularly susceptible to rapid climate change. General circulation models (GCMs) suggest a polar amplification of any global warming signal by a factor of about 1.5 due, in part, to sea ice feedbacks. The dramatic recent decline in multi-year sea ice cover lies outside the standard deviation of the CMIP3 ensemble GCM predictions. Sea ice acts as a barrier between cold air and warmer oceans during winter, as well as inhibiting evaporation from the ocean surface water during the summer. An ice free Arctic would likely have an altered hydrological cycle with more evaporation from the ocean surface leading to changes in precipitation distribution and amount. Using the U.K. Met Office Regional Climate Model (RCM), HadRM3, the atmospheric effects of the observed and projected reduction in Arctic sea ice are investigated. The RCM is driven by the atmospheric GCM HadAM3. Both models are forced with sea surface temperature and sea ice for the period 2061-2090 from the CMIP3 HadGEM1 experiments. Here we use an RCM at 50km resolution over the Arctic and 25km over Svalbard, which captures well the present-day pattern of precipitation and provides a detailed picture of the projected changes in the behaviour of the oceanic-atmosphere moisture fluxes and how they affect precipitation. These experiments show that the projected 21stCentury sea ice decline alone causes large impacts to the surface mass balance (SMB) on Svalbard. However Greenland’s SMB is not significantly affected by sea ice decline alone, but responds with a strongly negative shift in SMB when changes to SST are incorporated into the experiments. This is the first study to characterise the impact of changes in future sea ice to Arctic terrestrial cryosphere mass balance.