982 resultados para Bacterial-based


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The HbpR protein is the sigma54-dependent transcription activator for 2-hydroxybiphenyl degradation in Pseudomonas azelaica. The ability of HbpR and XylR, which share 35% amino acid sequence identity, to cross-activate the PhbpC and Pu promoters was investigated by determining HbpR- or XylR-mediated luciferase expression and by DNA binding assays. XylR measurably activated the PhbpC promoter in the presence of the effector m-xylene, both in Escherichia coli and Pseudomonas putida. HbpR weakly stimulated the Pu promoter in E. coli but not in P. azelaica. Poor HbpR-dependent activation from Pu was caused by a weak binding to the operator region. To create promoters efficiently activated by both regulators, the HbpR binding sites on PhbpC were gradually changed into the XylR binding sites of Pu by site-directed mutagenesis. Inducible luciferase expression from mutated promoters was tested in E. coli on a two plasmid system, and from mono copy gene fusions in P. azelaica and P. putida. Some mutants were efficiently activated by both HbpR and XylR, showing that promoters can be created which are permissive for both regulators. Others achieved a higher XylR-dependent transcription than from Pu itself. Mutants were also obtained which displayed a tenfold lower uninduced expression level by HbpR than the wild-type PhbpC, while keeping the same maximal induction level. On the basis of these results, a dual-responsive bioreporter strain of P. azelaica was created, containing both XylR and HbpR, and activating luciferase expression from the same single promoter independently with m-xylene and 2-hydroxybiphenyl.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-chain alkanes are a major component of crude oil and therefore potentially good indicators of hydrocarbon spills. Here we present a set of new bacterial bioreporters and assays that allow to detect long-chain alkanes. These reporters are based on the regulatory protein AlkS and the alkB1 promoter from Alcanivorax borkumensis SK2, a widespread alkane degrader in marine habitats. Escherichia coli cells with the reporter construct reacted strongly to octane in short-term (6 h) aqueous suspension assays but very slightly only to tetradecane, in line with what is expected from its low water solubility. In contrast, long-term assays (up to 5 days) with A. borkumensis bioreporters showed strong induction with tetradecane and crude oil. Gel-immobilized A. borkumensis reporter cells were used to demonstrate tetradecane and crude oil bioavailability at a distance from a source. Alcanivorax borkumensis bioreporters induced fivefold more rapid and more strongly when allowed physical contact with the oil phase in standing flask assays, suggesting a major contribution of adhered cells to the overall reporter signal. Using the flask assays we further demonstrated the effect of oleophilic nutrients and biosurfactants on oil availability and degradation by A. borkumensis. The fluorescence signal from flask assays could easily be captured with a normal digital camera, making such tests feasible to be carried out on, e.g. marine oil responder vessels in case of oil accidents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show proof of principle for assessing compound biodegradation at 1-2 mg C per L by measuring microbial community growth over time with direct cell counting by flow cytometry. The concept is based on the assumption that the microbial community will increase in cell number through incorporation of carbon from the added test compound into new cells in the absence of (as much as possible) other assimilable carbon. We show on pure cultures of the bacterium Pseudomonas azelaica that specific population growth can be measured with as low as 0.1 mg 2-hydroxybiphenyl per L, whereas in mixed community 1 mg 2-hydroxybiphenyl per L still supported growth. Growth was also detected with a set of fragrance compounds dosed at 1-2 mg C per L into diluted activated sludge and freshwater lake communities at starting densities of 10(4) cells per ml. Yield approximations from the observed community growth was to some extent in agreement with standard OECD biodegradation test results for all, except one of the examined compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial degradation of polycyclic aromatic hydrocarbons (PAHs), ubiquitous contaminants from oil and coal, is typically limited by poor accessibility of the contaminant to the bacteria. In order to measure PAH availability in complex systems, we designed a number of diffusion-based assays with a double-tagged bacterial reporter strain Burkholderia sartisoli RP037-mChe. The reporter strain is capable of mineralizing phenanthrene (PHE) and induces the expression of enhanced green fluorescent protein (eGFP) as a function of the PAH flux to the cell. At the same time, it produces a second autofluorescent protein (mCherry) in constitutive manner. Quantitative epifluorescence imaging was deployed in order to record reporter signals as a function of PAH availability. The reporter strain expressed eGFP proportionally to dosages of naphthalene or PHE in batch liquid cultures. To detect PAH diffusion from solid materials the reporter cells were embedded in 2 cm-sized agarose gel patches, and fluorescence was recorded over time for both markers as a function of distance to the PAH source. eGFP fluorescence gradients measured on known amounts of naphthalene or PHE served as calibration for quantifying PAH availability from contaminated soils. To detect reporter gene expression at even smaller diffusion distances, we mixed and immobilized cells with contaminated soils in an agarose gel. eGFP fluorescence measurements confirmed gel patch diffusion results that exposure to 2-3 mg lampblack soil gave four times higher expression than to material contaminated with 10 or 1 (mg PHE) g(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identification and relative quantification of hundreds to thousands of proteins within complex biological samples have become realistic with the emergence of stable isotope labeling in combination with high throughput mass spectrometry. However, all current chemical approaches target a single amino acid functionality (most often lysine or cysteine) despite the fact that addressing two or more amino acid side chains would drastically increase quantifiable information as shown by in silico analysis in this study. Although the combination of existing approaches, e.g. ICAT with isotope-coded protein labeling, is analytically feasible, it implies high costs, and the combined application of two different chemistries (kits) may not be straightforward. Therefore, we describe here the development and validation of a new stable isotope-based quantitative proteomics approach, termed aniline benzoic acid labeling (ANIBAL), using a twin chemistry approach targeting two frequent amino acid functionalities, the carboxylic and amino groups. Two simple and inexpensive reagents, aniline and benzoic acid, in their (12)C and (13)C form with convenient mass peak spacing (6 Da) and without chromatographic discrimination or modification in fragmentation behavior, are used to modify carboxylic and amino groups at the protein level, resulting in an identical peptide bond-linked benzoyl modification for both reactions. The ANIBAL chemistry is simple and straightforward and is the first method that uses a (13)C-reagent for a general stable isotope labeling approach of carboxylic groups. In silico as well as in vitro analyses clearly revealed the increase in available quantifiable information using such a twin approach. ANIBAL was validated by means of model peptides and proteins with regard to the quality of the chemistry as well as the ionization behavior of the derivatized peptides. A milk fraction was used for dynamic range assessment of protein quantification, and a bacterial lysate was used for the evaluation of relative protein quantification in a complex sample in two different biological states

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To assess how different diagnostic decision aids perform in terms of sensitivity, specificity, and harm. METHODS: Four diagnostic decision aids were compared, as applied to a simulated patient population: a findings-based algorithm following a linear or branched pathway, a serial threshold-based strategy, and a parallel threshold-based strategy. Headache in immune-compromised HIV patients in a developing country was used as an example. Diagnoses included cryptococcal meningitis, cerebral toxoplasmosis, tuberculous meningitis, bacterial meningitis, and malaria. Data were derived from literature and expert opinion. Diagnostic strategies' validity was assessed in terms of sensitivity, specificity, and harm related to mortality and morbidity. Sensitivity analyses and Monte Carlo simulation were performed. RESULTS: The parallel threshold-based approach led to a sensitivity of 92% and a specificity of 65%. Sensitivities of the serial threshold-based approach and the branched and linear algorithms were 47%, 47%, and 74%, respectively, and the specificities were 85%, 95%, and 96%. The parallel threshold-based approach resulted in the least harm, with the serial threshold-based approach, the branched algorithm, and the linear algorithm being associated with 1.56-, 1.44-, and 1.17-times higher harm, respectively. Findings were corroborated by sensitivity and Monte Carlo analyses. CONCLUSION: A threshold-based diagnostic approach is designed to find the optimal trade-off that minimizes expected harm, enhancing sensitivity and lowering specificity when appropriate, as in the given example of a symptom pointing to several life-threatening diseases. Findings-based algorithms, in contrast, solely consider clinical observations. A parallel workup, as opposed to a serial workup, additionally allows for all potential diseases to be reviewed, further reducing false negatives. The parallel threshold-based approach might, however, not be as good in other disease settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a whole-cell based sensor for arsenite detection coupling biological engineering and electrochemical techniques is presented. This strategy takes advantage of the natural Escherichia coli resistance mechanism against toxic arsenic species, such as arsenite, which consists of the selective intracellular recognition of arsenite and its pumping out from the cell. A whole-cell based biosensor can be produced by coupling the intracellular recognition of arsenite to the generation of an electrochemical signal. Hereto, E. coli was equipped with a genetic circuit in which synthesis of beta-galactosidase is under control of the arsenite-derepressable arsR-promoter. The E. coli reporter strain was filled in a microchip containing 16 independent electrochemical cells (i.e. two-electrode cell), which was then employed for analysis of tap and groundwater samples. The developed arsenic-sensitive electrochemical biochip is easy to use and outperforms state-of-the-art bacterial bioreporters assays specifically in its simplicity and response time, while keeping a very good limit of detection in tap water, i.e. 0.8ppb. Additionally, a very good linear response in the ranges of concentration tested (0.94ppb to 3.75ppb, R(2)=0.9975 and 3.75 ppb to 30ppb, R(2)=0.9991) was obtained, complying perfectly with the acceptable arsenic concentration limits defined by the World Health Organization for drinking water samples (i.e. 10ppb). Therefore, the proposed assay provides a very good alternative for the portable quantification of As (III) in water as corroborated by the analysis of natural groundwater samples from Swiss mountains, which showed a very good agreement with the results obtained by atomic absorption spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we report the first ever large-scale environmental validation of a microbial reporter-based test to measure arsenic concentrations in natural water resources. A bioluminescence-producing arsenic-inducible bacterium based on Escherichia coli was used as the reporter organism. Specific protocols were developed with the goal to avoid the negative influence of iron in groundwater on arsenic availability to the bioreporter cells. A total of 194 groundwater samples were collected in the Red River and Mekong River Delta regions of Vietnam and were analyzed both by atomic absorption spectroscopy (AAS) and by the arsenic bioreporter protocol. The bacterial cells performed well at and above arsenic concentrations in groundwater of 7 microg/L, with an almost linearly proportional increase of the bioluminescence signal between 10 and 100 microg As/L (r2 = 0.997). Comparisons between AAS and arsenic bioreporter determinations gave an overall average of 8.0% false negative and 2.4% false positive identifications for the bioreporter prediction at the WHO recommended acceptable arsenic concentration of 10 microg/L, which is far betterthan the performance of chemical field test kits. Because of the ease of the measurement protocol and the low application cost, the microbiological arsenic test has a great potential in large screening campaigns in Asia and in other areas suffering from arsenic pollution in groundwater resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preharvest burning is widely used in Brazil for sugarcane cropping. However, due to environmental restrictions, harvest without burning is becoming the predominant option. Consequently, changes in the microbial community are expected from crop residue accumulation on the soil surface, as well as alterations in soil metabolic diversity as of the first harvest. Because biological properties respond quickly and can be used to monitor environmental changes, we evaluated soil metabolic diversity and bacterial community structure after the first harvest under sugarcane management without burning compared to management with preharvest burning. Soil samples were collected under three sugarcane varieties (SP813250, SP801842 and RB72454) and two harvest management systems (without and with preharvest burning). Microbial biomass C (MBC), carbon (C) substrate utilization profiles, bacterial community structure (based on profiles of 16S rRNA gene amplicons), and soil chemical properties were determined. MBC was not different among the treatments. C-substrate utilization and metabolic diversity were lower in soil without burning, except for the evenness index of C-substrate utilization. Soil samples under the variety SP801842 showed the greatest changes in substrate utilization and metabolic diversity, but showed no differences in bacterial community structure, regardless of the harvest management system. In conclusion, combined analysis of soil chemical and microbiological data can detect early changes in microbial metabolic capacity and diversity, with lower values in management without burning. However, after the first harvest, there were no changes in the soil bacterial community structure detected by PCR-DGGE under the sugarcane variety SP801842. Therefore, the metabolic profile is a more sensitive indicator of early changes in the soil microbial community caused by the harvest management system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Community-acquired pneumonia (CAP) is a major cause of death in developing countries and of morbidity in developed countries. The objective of the study was to define the causative agents among children hospitalized for CAP defined by WHO guidelines and to correlate etiology with clinical severity and surrogate markers. Investigations included an extensive etiological workup. A potential causative agent was detected in 86% of the 99 enrolled patients, with evidence of bacterial (53%), viral (67%), and mixed (33%) infections. Streptococcus pneumoniae was accounted for in 46% of CAP. Dehydration was the only clinical sign associated with bacterial pneumonia. CRP and PCT were significantly higher in bacterial infections. Increasing the number of diagnostic tests identifies potential causes of CAP in up to 86% of children, indicating a high prevalence of viruses and frequent co-infections. The high proportion of pneumococcal infections re-emphasizes the importance of pneumococcal immunization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bacterial insertion sequence IS21 when repeated in tandem efficiently promotes non-replicative cointegrate formation in Escherichia coli. An IS21-IS21 junction region which had been engineered to contain unique SalI and BglII sites close to the IS21 termini was not affected in the ability to form cointegrates with target plasmids. Based on this finding, a novel procedure of random linker insertion mutagenesis was devised. Suicide plasmids containing the engineered junction region (pME5 and pME6) formed cointegrates with target plasmids in an E.coli host strain expressing the IS21 transposition proteins in trans. Cointegrates were resolved in vitro by restriction with SalI or BglII and ligation; thus, insertions of four or 11 codons, respectively, were created in the target DNA, practically at random. The cloned Pseudomonas aeruginosa arcB gene encoding catabolic ornithine carbamoyltransferase was used as a target. Of 20 different four-codon insertions in arcB, 11 inactivated the enzyme. Among the remaining nine insertion mutants which retained enzyme activity, three enzyme variants had reduced affinity for the substrate ornithine and one had lost recognition of the allosteric activator AMP. The linker insertions obtained illustrate the usefulness of the method in the analysis of structure-function relationships of proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mass spectrometry (MS) is currently the most sensitive and selective analytical technique for routine peptide and protein structure analysis. Top-down proteomics is based on tandem mass spectrometry (MS/ MS) of intact proteins, where multiply charged precursor ions are fragmented in the gas phase, typically by electron transfer or electron capture dissociation, to yield sequence-specific fragment ions. This approach is primarily used for the study of protein isoforms, including localization of post-translational modifications and identification of splice variants. Bottom-up proteomics is utilized for routine high-throughput protein identification and quantitation from complex biological samples. The proteins are first enzymatically digested into small (usually less than ca. 3 kDa) peptides, these are identified by MS or MS/MS, usually employing collisional activation techniques. To overcome the limitations of these approaches while combining their benefits, middle-down proteomics has recently emerged. Here, the proteins are digested into long (3-15 kDa) peptides via restricted proteolysis followed by the MS/MS analysis of the obtained digest. With advancements of high-resolution MS and allied techniques, routine implementation of the middle-down approach has been made possible. Herein, we present the liquid chromatography (LC)-MS/MS-based experimental design of our middle-down proteomic workflow coupled with post-LC supercharging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies on the impact of Eucalyptus spp. on Brazilian soils have focused on soil chemical properties and isolating interesting microbial organisms. Few studies have focused on microbial diversity and ecology in Brazil due to limited coverage of traditional cultivation and isolation methods. Molecular microbial ecology methods based on PCR amplified 16S rDNA have enriched the knowledge of soils microbial biodiversity. The objective of this work was to compare and estimate the bacterial diversity of sympatric communities within soils from two areas, a native forest (NFA) and an eucalyptus arboretum (EAA). PCR primers, whose target soil metagenomic 16S rDNA were used to amplify soil DNA, were cloned using pGEM-T and sequenced to determine bacterial diversity. From the NFA soil 134 clones were analyzed, while 116 clones were analyzed from the EAA soil samples. The sequences were compared with those online at the GenBank. Phylogenetic analyses revealed differences between the soil types and high diversity in both communities. Soil from the Eucalyptus spp. arboretum was found to have a greater bacterial diversity than the soil investigated from the native forest area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several approaches have been developed to estimate both the relative and absolute rates of speciation and extinction within clades based on molecular phylogenetic reconstructions of evolutionary relationships, according to an underlying model of diversification. However, the macroevolutionary models established for eukaryotes have scarcely been used with prokaryotes. We have investigated the rate and pattern of cladogenesis in the genus Aeromonas (γ-Proteobacteria, Proteobacteria, Bacteria) using the sequences of five housekeeping genes and an uncorrelated relaxed-clock approach. To our knowledge, until now this analysis has never been applied to all the species described in a bacterial genus and thus opens up the possibility of establishing models of speciation from sequence data commonly used in phylogenetic studies of prokaryotes. Our results suggest that the genus Aeromonas began to diverge between 248 and 266 million years ago, exhibiting a constant divergence rate through the Phanerozoic, which could be described as a pure birth process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In bottom-up proteomics, rapid and efficient protein digestion is crucial for data reliability. However, sample preparation remains one of the rate-limiting steps in proteomics workflows. In this study, we compared the conventional trypsin digestion procedure with two accelerated digestion protocols based on shorter reaction times and microwave-assisted digestion for the preparation of membrane-enriched protein fractions of the human pathogenic bacterium Staphylococcus aureus. Produced peptides were analyzed by Shotgun IPG-IEF, a methodology relying on separation of peptides by IPG-IEF before the conventional LC-MS/MS steps of shotgun proteomics. Data obtained on two LC-MS/MS platforms showed that accelerated digestion protocols, especially the one relying on microwave irradiation, enhanced the cleavage specificity of trypsin and thus improved the digestion efficiency especially for hydrophobic and membrane proteins. The combination of high-throughput proteomics with accelerated and efficient sample preparation should enhance the practicability of proteomics by reducing the time from sample collection to obtaining the results.