962 resultados para Bacterial contamination
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective Bacterial species have been found harboring the internal surface of dental implants as consequence of their failed connections. The aim of the present study was to compare the detection frequency of bacterial leakage from human saliva through the implantabutment interface, under non-loading conditions, using either DNA Checkerboard or culture method. Materials and methods Thirty dental implants with hexagonal platforms were connected to pre-machined abutments according to the manufacturers specifications. The assemblies were individually incubated in human saliva under anaerobic conditions for 7 similar to days at 37 degrees C. Afterward, contents from the inner parts of the implants were collected and evaluated with either DNA Checkerboard (s similar to=similar to 15) or culture (n similar to=similar to 15). Subsequently, identification and quantitation of bacterial species from saliva and implants were carried out for the group evaluated with the DNA Checkerboard method. Results Both DNA Checkerboard and culture showed positive signals of bacterial leakage in 6 of the 15 evaluated samples. Capnocytophaga gingivalis and Streptococcus mutans were the most frequently detected species harboring the internal surface of the implants followed by Veillonella parvula. Conclusion Occurrence of bacterial leakage along the implantabutment interface is comparably detected with both DNA Checkerboard hybridization and conventional culture methods.
Resumo:
An investigation was conducted to test the hypothesis that the storage time of packaging sterility has no effect on contamination susceptibility even under deliberate bacterial exposure (Serratia marcescens). No growth of the test microorganisms was identified in the experimental group in any of the storage intervals (7, 14, 28, 90, and 180 days). Current recommendations/guidelines suggest that contamination of packaging occurs only because of events. This study, done in vitro, supports these recommendations. Copyright (c) 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Resumo:
Mangrove ecosystems are tropical environments that are characterized by the interaction between the land and the sea. As such, this ecosystem is vulnerable to oil spills. Here, we show a culture-independent survey of fungal communities that are found in the sediments of the following two mangroves that are located on the coast of Sao Paulo State (Brazil): (1) an oil-spill-affected mangrove and (2) a nearby unaffected mangrove. Samples were collected from each mangrove forest at three distinct locations (transect from sea to land), and the samples were analyzed by quantitative PCR and internal transcribed spacer (ITS)-based PCR-DGGE analysis. The abundance of fungi was found to be higher in the oil-affected mangrove. Visual observation and correspondence analysis (CA) of the ITS-based PCR-DGGE profiles revealed differences in the fungal communities between the sampled areas. Remarkably, the oil-spilled area was quite distinct from the unaffected sampling areas. On the basis of the ITS sequences, fungi that are associated with the Basidiomycota and Ascomycota taxa were most common and belonged primarily to the genera Epicoccum, Nigrospora, and Cladosporium. Moreover, the Nigrospora fungal species were shown to be sensitive to oil, whereas a group that was described as "uncultured Basidiomycota" was found more frequently in oil-contaminated areas. Our results showed an increase in fungal abundance in the oil-polluted mangrove regions, and these data indicated potential fungal candidates for remediation of the oil-affected mangroves.
Resumo:
Understanding the origins, transport and fate of contamination is essential to effective management of water resources and public health. Individuals and organizations with management responsibilities need to understand the risks to ecosystems and to humans from contact with contamination. Managers also need to understand how key contaminants vary over time and space in order to design and prioritize mitigation strategies. Tumacacori National Historic Park (NHP) is responsible for management of its water resources for the benefit of the park and for the health of its visitors. The existence of microbial contaminants in the park poses risks that must be considered in park planning and operations. The water quality laboratory at the Maricopa Agricultural Center (in collaboration with stakeholder groups and individuals located in the ADEQ-targeted watersheds) identified biological changes in surface water quality in impaired reaches rivers to determine the sources of Escherichia coli (E. coli); bacteria utilizing innovative water quality microbial/bacterial source tracking methods. The end goal was to support targeted watershed groups and ADEQ towards E. coli reductions. In the field monitoring was conducted by the selected targeted watershed groups in conjunction with The University of Arizona Maricopa Agricultural Center Water Quality Laboratory. This consisted of collecting samples for Bacteroides testing from multiple locations on select impaired reaches, to determine contamination resulting from cattle, human recreation, and other contributions. Such testing was performed in conjunction with high flow and base flow conditions in order to accurately portray water quality conditions and variations. Microbial monitoring was conducted by The University of Arizona Water Quality Laboratory at the Maricopa Agricultural Center using genetic typing to differentiate among two categories of Bacteroides: human and all (total). Testing used microbial detection methodologies and molecular source tracking techniques.^
Resumo:
With global heavy metal contamination increasing, plants that can process heavy metals might provide efficient and ecologically sound approaches to sequestration and removal. Mercuric ion reductase, MerA, converts toxic Hg2+ to the less toxic, relatively inert metallic mercury (Hg0) The bacterial merA sequence is rich in CpG dinucleotides and has a highly skewed codon usage, both of which are particularly unfavorable to efficient expression in plants. We constructed a mutagenized merA sequence, merApe9, modifying the flanking region and 9% of the coding region and placing this sequence under control of plant regulatory elements. Transgenic Arabidopsis thaliana seeds expressing merApe9 germinated, and these seedlings grew, flowered, and set seed on medium containing HgCl2 concentrations of 25-100 microM (5-20 ppm), levels toxic to several controls. Transgenic merApe9 seedlings evolved considerable amounts of Hg0 relative to control plants. The rate of mercury evolution and the level of resistance were proportional to the steady-state mRNA level, confirming that resistance was due to expression of the MerApe9 enzyme. Plants and bacteria expressing merApe9 were also resistant to toxic levels of Au3+. These and other data suggest that there are potentially viable molecular genetic approaches to the phytoremediation of metal ion pollution.
Resumo:
Bacteria that degrade polycyclic aromatic hydrocarbons (PAHs) in the estuarine surface microlayer (SML) of the Ria de Aveiro, Portugal—which is chronically polluted with oil hydrocarbons (OH)—were isolated and characterized; Pseudomonas was dominant among the PAH-degrading bacteria. Screening for PAH dioxygenase genes detected almost identical nahAc genes (encoding the alpha subunits of naphthalene dioxygenase) in 2 phylogenetically distinct isolates: Pseudomonas sp. and an unknown species of the family Enterobacteriaceae; this suggested that horizontal transfer of nah genes might be involved in PAH degradation in the SML. We also investigated the effect of PAH contamination on the spatial variability of the bacterioneuston along a gradient of pollution in the estuarine system of the Ria de Aveiro. Culture-independent techniques—fluorescence in situ hy - bridization (FISH) and denaturing-gradient gel electrophoresis (DGGE)—revealed a similar structure among the bacterioneuston communities along the estuary. In contrast, we detected differences in the relative abundance and diversity of organisms of the Gammaproteobacteria, including those of the genus Pseudomonas (which belongs to the Gammaproteobacteria). This is the first insight into the hydrocarbonoclastic bacterial communities in the SML of an estuarine area polluted with hydrocarbons. Our findings highlight the importance of SML-adapted hydrocarbonoclastic bacterioneuston as a potential source of new PAH-degrading bacteria (including new pseudomonads) with potential use in the bioremediation of hydrocarbon-polluted ecosystems.
Resumo:
Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs) in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales.
Resumo:
Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments.
Resumo:
Mining activities pose severe environmental risks worldwide, generating extreme pH conditions and high concentrations of heavy metals, which can have major impacts on the survival of organisms. In this work, pyrosequencing of the V3 region of the 16S rDNA was used to analyze the bacterial communities in soil samples from a Brazilian copper mine. For the analysis, soil samples were collected from the slopes (geotechnical structures) and the surrounding drainage of the Sossego mine (comprising the Sossego and Sequeirinho deposits). The results revealed complex bacterial diversity, and there was no influence of deposit geographic location on the composition of the communities. However, the environment type played an important role in bacterial community divergence; the composition and frequency of OTUs in the slope samples were different from those of the surrounding drainage samples, and Acidobacteria, Chloroflexi, Firmicutes, and Gammaproteobacteria were responsible for the observed difference. Chemical analysis indicated that both types of sample presented a high metal content, while the amounts of organic matter and water were higher in the surrounding drainage samples. Non-metric multidimensional scaling (N-MDS) analysis identified organic matter and water as important distinguishing factors between the bacterial communities from the two types of mine environment. Although habitat-specific OTUs were found in both environments, they were more abundant in the surrounding drainage samples (around 50 %), and contributed to the higher bacterial diversity found in this habitat. The slope samples were dominated by a smaller number of phyla, especially Firmicutes. The bacterial communities from the slope and surrounding drainage samples were different in structure and composition, and the organic matter and water present in these environments contributed to the observed differences.
Resumo:
Type IV secretion systems (T4SSs) are multiprotein complexes that transport effector proteins and protein-DNA complexes through bacterial membranes to the extracellular milieu or directly into the cytoplasm of other cells. Many bacteria of the family Xanthomonadaceae, which occupy diverse environmental niches, carry a T4SS with unknown function but with several characteristics that distinguishes it from other T4SSs. Here we show that the Xanthomonas citri T4SS provides these cells the capacity to kill other Gram-negative bacterial species in a contact-dependent manner. The secretion of one type IV bacterial effector protein is shown to require a conserved C-terminal domain and its bacteriolytic activity is neutralized by a cognate immunity protein whose 3D structure is similar to peptidoglycan hydrolase inhibitors. This is the first demonstration of the involvement of a T4SS in bacterial killing and points to this special class of T4SS as a mediator of both antagonistic and cooperative interbacterial interactions.
Resumo:
The present work aimed to investigate the diversity of bacteria and filamentous fungi of southern Atlantic Ocean marine sponge Dragmacidon reticulatum using cultivation-independent approaches. Fungal ITS rDNA and 18S gene analyses (DGGE and direct sequencing approaches) showed the presence of representatives of three order (Polyporales, Malasseziales, and Agaricales) from the phylum Basidiomycota and seven orders belonging to the phylum Ascomycota (Arthoniales, Capnodiales, Dothideales, Eurotiales, Hypocreales, Pleosporales, and Saccharomycetales). On the other hand, bacterial 16S rDNA gene analyses by direct sequencing approach revealed the presence of representatives of seven bacterial phyla (Cyanobacteria, Proteobacteria, Actinobacteria, Bacteroidetes, Lentisphaerae, Chloroflexi, and Planctomycetes). Results from statistical analyses (rarefaction curves) suggested that the sampled clones covered the fungal diversity in the sponge samples studied, while for the bacterial community additional sampling would be necessary for saturation. This is the first report related to the molecular analyses of fungal and bacterial communities by cultivation-independent approaches in the marine sponges D. reticulatum. Additionally, the present work broadening the knowledge of microbial diversity associated to marine sponges and reports innovative data on the presence of some fungal genera in marine samples.
Resumo:
The aim of this study was to quantify radiographically the periapical bone resorption in dogs' teeth contaminated with bacterial endotoxin (LPS), associated or not with calcium hydroxide. After pulp tissue removal, 60 premolars were randomly assigned to 4 groups and were either filled with LPS (group 1), filled with LPS plus calcium hydroxide (group 2) or filled with saline (group 3) for a period of 30 days. In group 4, periapical lesion formation was induced with no canal treatment. Standardized radiographs were taken at the beginning of the treatment and after 30 days and the Image J Program was used for measurement of periapical lesion size. Periapical lesions were observed in groups 1 (average of 8.44 mm2) and 4 (average of 3.02 mm2). The lamina dura was intact and there were no areas of periapical bone resorption in groups 2 and 3. It may be concluded that calcium hydroxide was effective in inactivating LPS, as demonstrated by the absence of apical periodontitis in the roots that were filled with bacterial endotoxin plus calcium hydroxide.
Resumo:
PURPOSE: The aim of this study was to assess the contamination status of endodontic absorbent paper points from sterilized or not sterilized commercial packs, as well as paper points exposed to the dental office environment. METHODS: Twenty absorbent paper points were evaluated for contamination status packed under different conditions: commercial/sterilized pack, commercial/non-sterilized pack, exposed to the clinical environment, and intentionally contaminated (positive control). Contamination was determined qualitatively and quantitatively by aerobiosis, capnophilic growth, and pour plate. The Petri dishes were analyzed with a colony counter, and the results were expressed as colony-forming units. The data were analyzed by Kruskal-Wallis test (α=0.05). RESULTS: No difference in colony-forming units was found among the groups of endodontic absorbent paper points. All groups were contaminated by fungi and bacteria. CONCLUSION: It can be concluded that the sterilization of absorbent endodontic paper points before clinical use should be recommended regardless of commercial presentation
Resumo:
This study evaluated the microbiological quality of hamburgers and the microbe community on the hands of vendors in Cuiabá, Mato Grosso, Brazil, in relation to vendors´ awareness as to what constitute acceptable food-handling practices as part of a broad-spectrum research programme on street foods in Brazil . Sale of the hamburger known as the 'baguncinha' is common and widespread in urban Cuiabá, Mato Grosso, Brazil. Food inspectors encounter various difficulties in carrying out inspections. One hundred and five hamburgers samples were evaluated using conventional methods including tests for facultative aerobic and/or anaerobic mesophytic bacteria, coliform counts at 45 °C, the coagulase test for Staphylococcus, Gram-staining for the presence of Bacillus cereus, Clostridium sulphite reductase and Salmonella spp. The hamburgers were categorized as unsuitable for human consumption in 31.4% of samples, with those testing positive for coliforms and Staphylococcus at unacceptably high levels by Brazilian standards. High levels of microbiological contamination were detected on the hands of the food handlers and mesophytic bacterial counts reached 1.8 × 10(4) CFU/hand. Interviews were carried out by means of questionnaires to evaluate levels of awareness as to acceptable food handling practices and it was found that 80,1% of vendors had never participated in any kind of training.