985 resultados para Background Traffic Modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In healthy people, glucose is metabolized through Embden-Meyerhoff pathway. In cases of diabetes mellitus, with the increased levels of glucose in insulin-insensitive tissues the Aldose Reductase (AR) in polyol pathway facilitates the conversion of glucose to sorbitol. In this cascade of events the accumulated sorbitol is attributed to be responsible for cataract, neuropathy and retinopathy in diabetic cases.1,2 Thus, the inhibition of AR in polyol pathway may prevent and lead to the cure of the complications arising out of the diabetes mellitus. In this background, Matsuda and coworkers3 studied the AR inhibitory activity of large number of flavones and related compounds from traditional antidiabetic remedies. Here, many of these compounds shared 2-Aryl-benzpyran-4-one as scaffold for different chemical groups surrounding this moiety. This offers scope to investigate the AR inhibitory activity of these compounds in relation to the functional group environment surrounding this core

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This document corresponds to the tutorial on realistic neural modeling given by David Beeman at WAM-BAMM*05, the first annual meeting of the World Association of Modelers (WAM) Biologically Accurate Modeling Meeting (BAMM) on March 31, 2005 in San Antonio, TX. Part I - Introduction to Realistic Neural Modeling for the Beginner: This is a general overview and introduction to compartmental cell modeling and realistic network simulation for the beginner. Although examples are drawn from GENESIS simulations, the tutorial emphasizes the general modeling approach, rather than the details of using any particular simulator. Part II - Getting Started with Modeling Using GENESIS: This builds upon the background of Part I to describe some details of how this approach is used to construct cell and network simulations in GENESIS. It serves as an introduction and roadmap to the extended hands-on GENESIS Modeling Tutorial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Pelvic inflammatory disease (PID) results from the ascending spread of microorganisms, including Chlamydia trachomatis, to the upper genital tract. Screening could improve outcomes by identifying and treating chlamydial infections before they progress to PID (direct effect) or by reducing chlamydia transmission (indirect effect). METHODS We developed a compartmental model that represents a hypothetical heterosexual population and explicitly incorporates progression from chlamydia to clinical PID. Chlamydia screening was introduced, with coverage increasing each year for 10 years. We estimated the separate contributions of the direct and indirect effects of screening on PID cases prevented per 100,000 women. We explored the influence of varying the time point at which clinical PID could occur and of increasing the risk of PID after repeated chlamydial infections. RESULTS The probability of PID at baseline was 3.1% by age 25 years. After 5 years, the intervention scenario had prevented 187 PID cases per 100,000 women and after 10 years 956 PID cases per 100,000 women. At the start of screening, most PID cases were prevented by the direct effect. The indirect effect produced a small net increase in PID cases, which was outweighed by the effect of reduced chlamydia transmission after 2.2 years. The later that progression to PID occurs, the greater the contribution of the direct effect. Increasing the risk of PID with repeated chlamydial infection increases the number of PID cases prevented by screening. CONCLUSIONS This study shows the separate roles of direct and indirect PID prevention and potential harms, which cannot be demonstrated in observational studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last ~20 years, soil spectral libraries storing near-infrared reflectance (NIR) spectra from diverse soil samples have been built for many places, since almost 10 years also for Tajikistan. Many calibration approaches have been reported and used for prediction from large and heterogeneous libraries, but most are hampered by the high diversity of the soils, where the mineral background is heavily influencing spectral features. In such cases, local learning strategies have the advantage of building locally adapted calibrations, which can deal better with nonlinearities. Therefore, it was our major aim to identify the most efficient approach to develop an accurate and stable locally weigthed calibration model using a spectral library compiled over the past years. Keywords: Tajikistan, Near-Infrared spectroscopy (NIRS), soil organic carbon, locally weighted regression, regional and local spectral library.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colorectal cancer is a complex disease that is thought to arise when cells accumulate mutations that allow for uncontrolled growth. There are several recognized mechanisms for generating such mutations in sporadic colon cancer; one of which is chromosomal instability (CIN). One hypothesized driver of CIN in cancer is the improper repair of dysfunctional telomeres. Telomeres comprise the linear ends of chromosomes and play a dual role in cancer. Its length is maintained by the ribonucleoprotein, telomerase, which is not a normally expressed in somatic cells and as cells divide, telomeres continuously shorten. Critically shortened telomeres are considered dysfunctional as they are recognized as sites of DNA damage and cells respond by entering into replicative senescence or apoptosis, a process that is p53-dependent and the mechanism for telomere-induced tumor suppression. Loss of this checkpoint and improper repair of dysfunctional telomeres can initiate a cycle of fusion, bridge and breakage that can lead to chromosomal changes and genomic instability, a process that can lead to transformation of normal cells to cancer cells. Mouse models of telomere dysfunction are currently based on knocking out the telomerase protein or RNA component; however, the naturally long telomeres of mice require multiple generational crosses of telomerase null mice to achieve critically short telomeres. Shelterin is a complex of six core proteins that bind to telomeres specifically. Pot1a is a highly conserved member of this complex that specifically binds to the telomeric single-stranded 3’ G-rich overhang. Previous work in our lab has shown that Pot1a is essential for chromosomal end protection as deletion of Pot1a in murine embryonic fibroblasts (MEFs) leads to open telomere ends that initiate a DNA damage response mediated by ATR, resulting in p53-dependent cellular senescence. Loss of Pot1a in the background of p53 deficiency results in increased aberrant homologous recombination at telomeres and elevated genomic instability, which allows Pot1a-/-, p53-/- MEFs to form tumors when injected into SCID mice. These phenotypes are similar to those seen in cells with critically shortened telomeres. In this work, we created a mouse model of telomere ysfunction in the gastrointestinal tract through the conditional deletion of Pot1a that recapitulates the microscopic features seen in severe telomere attrition. Combined intestinal loss of Pot1a and p53 lead to formation of invasive adenocarcinomas in the small and large intestines. The tumors formed with long latency, low multiplicity and had complex genomes due to chromosomal instability, features similar to those seen in sporadic human colorectal cancers. Taken together, we have developed a novel mouse model of intestinal tumorigenesis based on genomic instability driven by telomere dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of soil moisture anomalies on airmass convection over semiarid regions has been recognized in several studies. The underlying mechanisms remain partly unclear. An open question is why wetter soils can result in either an increase or a decrease of precipitation (positive or negative soil moisture–precipitation feedback, respectively). Here an idealized cloud-resolving modeling framework is used to explore the local soil moisture–precipitation feedback. The approach is able to replicate both positive and negative feedback loops, depending on the environmental parameters. The mechanism relies on horizontal soil moisture variations, which may develop and intensify spontaneously. The positive expression of the feedback is associated with the initiation of convection over dry soil patches, but the convective cells then propagate over wet patches where they strengthen and preferentially precipitate. The negative feedback may occur when the wind profile is too weak to support the propagation of convective features from dry to wet areas. Precipitation is then generally weaker and falls preferentially over dry patches. The results highlight the role of the midtropospheric flow in determining the sign of the feedback. A key element of the positive feedback is the exploitation of both low convective inhibition (CIN) over dry patches (for the initiation of convection) and high CAPE over wet patches (for the generation of precipitation).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potential desiccation polygons (PDPs) are polygonal surface patterns that are a common feature in Noachian-to-Hesperian-aged phyllosilicate- and chloride-bearing terrains and have been observed with size scales that range from cm-wide (by current rovers) to 10s of meters-wide. The global distribution of PDPs shows that they share certain traits in terms of morphology and geologic setting that can aid identification and distinction from fracturing patterns caused by other processes. They are mostly associated with sedimentary deposits that display spectral evidence for the presence of Fe/Mg smectites, Al-rich smectites or less commonly kaolinites, carbonates, and sulfates. In addition, PDPs may indicate paleolacustrine environments, which are of high interest for planetary exploration, and their presence implies that the fractured units are rich in smectite minerals that may have been deposited in a standing body of water. A collective synthesis with new data, particularly from the HiRISE camera suggests that desiccation cracks may be more common on the surface of Mars than previously thought. A review of terrestrial research on desiccation processes with emphasis on the theoretical background, field studies, and modeling constraints is presented here as well and shown to be consistent with and relevant to certain polygonal patterns on Mars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) frequently used in 3-D models are evaluated using a 0-D box model representing the Los Angeles metropolitan region during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle- and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA that formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model–measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate-volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model–measurement agreement for mass concentration. The results from the three parameterizations show large differences (e.g., a factor of 3 in SOA mass) and are not well constrained, underscoring the current uncertainties in this area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the recent parameterizations overpredict urban SOA formation at long photochemical ages (3 days) compared to observations from multiple sites, which can lead to problems in regional and especially global modeling. However, reducing IVOC emissions by one-half in the model to better match recent IVOC measurements improves SOA predictions at these long photochemical ages. Among the explicitly modeled VOCs, the precursor compounds that contribute the greatest SOA mass are methylbenzenes. Measured polycyclic aromatic hydrocarbons (naphthalenes) contribute 0.7% of the modeled SOA mass. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16–27, 35–61, and 19–35 %, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71(+-3) %. The relative contribution of each source is uncertain by almost a factor of 2 depending on the parameterization used. In-basin biogenic VOCs are predicted to contribute only a few percent to SOA. A regional SOA background of approximately 2.1 μgm-3 is also present due to the long-distance transport of highly aged OA, likely with a substantial contribution from regional biogenic SOA. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in OA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in SOA, due to cooking emissions, which was not accounted for in those previous studies and which is higher on weekends. Lastly, this work adapts a simple two-parameter model to predict SOA concentration and O/C from urban emissions. This model successfully predicts SOA concentration, and the optimal parameter combination is very similar to that found for Mexico City. This approach provides a computationally inexpensive method for predicting urban SOA in global and climate models. We estimate pollution SOA to account for 26 Tg yr-1 of SOA globally, or 17% of global SOA, one third of which is likely to be non-fossil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Study Context: Older drivers are at increased risk of becoming involved in car crashes. Contrary to well-studied illness-related factors contributing to crash risk, the non-illness-related factors that can influence safety of older drivers are underresearched. METHODS: Here, the authors review the literature on non-illness-related factors influencing driving in people over age 60. We identified six safety-relevant factors: road infrastructure, vehicle characteristics, traffic-related knowledge, accuracy of self-awareness, personality traits, and self-restricted driving. RESULTS: The literature suggests that vehicle preference, the quality of traffic-related knowledge, the location and time of traffic exposure, and personality traits should all be taken into account when assessing fitness-to-drive in older drivers. Studies indicate that self-rating of driving skills does not reliably predict fitness-to-drive. CONCLUSIONS: Most factors discussed are adaptable or accessible to training and collectively may have the potential to increase traffic safety for older drivers and other road users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND The blood-cerebrospinal fluid barrier (BCSFB) established by the choroid plexus (CP) epithelium has been recognized as a potential entry site of immune cells into the central nervous system during immunosurveillance and neuroinflammation. The location of the choroid plexus impedes in vivo analysis of immune cell trafficking across the BCSFB. Thus, research on cellular and molecular mechanisms of immune cell migration across the BCSFB is largely limited to in vitro models. In addition to forming contact-inhibited epithelial monolayers that express adhesion molecules, the optimal in vitro model must establish a tight permeability barrier as this influences immune cell diapedesis. METHODS We compared cell line models of the mouse BCSFB derived from the Immortomouse(®) and the ECPC4 line to primary mouse choroid plexus epithelial cell (pmCPEC) cultures for their ability to establish differentiated and tight in vitro models of the BCSFB. RESULTS We found that inducible cell line models established from the Immortomouse(®) or the ECPC4 tumor cell line did not express characteristic epithelial proteins such as cytokeratin and E-cadherin and failed to reproducibly establish contact-inhibited epithelial monolayers that formed a tight permeability barrier. In contrast, cultures of highly-purified pmCPECs expressed cytokeratin and displayed mature BCSFB characteristic junctional complexes as visualized by the junctional localization of E-cadherin, β-catenin and claudins-1, -2, -3 and -11. pmCPECs formed a tight barrier with low permeability and high electrical resistance. When grown in inverted filter cultures, pmCPECs were suitable to study T cell migration from the basolateral to the apical side of the BCSFB, thus correctly modelling in vivo migration of immune cells from the blood to the CSF. CONCLUSIONS Our study excludes inducible and tumor cell line mouse models as suitable to study immune functions of the BCSFB in vitro. Rather, we introduce here an in vitro inverted filter model of the primary mouse BCSFB suited to study the cellular and molecular mechanisms mediating immune cell migration across the BCSFB during immunosurveillance and neuroinflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first manuscript, entitled "Time-Series Analysis as Input for Clinical Predictive Modeling: Modeling Cardiac Arrest in a Pediatric ICU" lays out the theoretical background for the project. There are several core concepts presented in this paper. First, traditional multivariate models (where each variable is represented by only one value) provide single point-in-time snapshots of patient status: they are incapable of characterizing deterioration. Since deterioration is consistently identified as a precursor to cardiac arrests, we maintain that the traditional multivariate paradigm is insufficient for predicting arrests. We identify time series analysis as a method capable of characterizing deterioration in an objective, mathematical fashion, and describe how to build a general foundation for predictive modeling using time series analysis results as latent variables. Building a solid foundation for any given modeling task involves addressing a number of issues during the design phase. These include selecting the proper candidate features on which to base the model, and selecting the most appropriate tool to measure them. We also identified several unique design issues that are introduced when time series data elements are added to the set of candidate features. One such issue is in defining the duration and resolution of time series elements required to sufficiently characterize the time series phenomena being considered as candidate features for the predictive model. Once the duration and resolution are established, there must also be explicit mathematical or statistical operations that produce the time series analysis result to be used as a latent candidate feature. In synthesizing the comprehensive framework for building a predictive model based on time series data elements, we identified at least four classes of data that can be used in the model design. The first two classes are shared with traditional multivariate models: multivariate data and clinical latent features. Multivariate data is represented by the standard one value per variable paradigm and is widely employed in a host of clinical models and tools. These are often represented by a number present in a given cell of a table. Clinical latent features derived, rather than directly measured, data elements that more accurately represent a particular clinical phenomenon than any of the directly measured data elements in isolation. The second two classes are unique to the time series data elements. The first of these is the raw data elements. These are represented by multiple values per variable, and constitute the measured observations that are typically available to end users when they review time series data. These are often represented as dots on a graph. The final class of data results from performing time series analysis. This class of data represents the fundamental concept on which our hypothesis is based. The specific statistical or mathematical operations are up to the modeler to determine, but we generally recommend that a variety of analyses be performed in order to maximize the likelihood that a representation of the time series data elements is produced that is able to distinguish between two or more classes of outcomes. The second manuscript, entitled "Building Clinical Prediction Models Using Time Series Data: Modeling Cardiac Arrest in a Pediatric ICU" provides a detailed description, start to finish, of the methods required to prepare the data, build, and validate a predictive model that uses the time series data elements determined in the first paper. One of the fundamental tenets of the second paper is that manual implementations of time series based models are unfeasible due to the relatively large number of data elements and the complexity of preprocessing that must occur before data can be presented to the model. Each of the seventeen steps is analyzed from the perspective of how it may be automated, when necessary. We identify the general objectives and available strategies of each of the steps, and we present our rationale for choosing a specific strategy for each step in the case of predicting cardiac arrest in a pediatric intensive care unit. Another issue brought to light by the second paper is that the individual steps required to use time series data for predictive modeling are more numerous and more complex than those used for modeling with traditional multivariate data. Even after complexities attributable to the design phase (addressed in our first paper) have been accounted for, the management and manipulation of the time series elements (the preprocessing steps in particular) are issues that are not present in a traditional multivariate modeling paradigm. In our methods, we present the issues that arise from the time series data elements: defining a reference time; imputing and reducing time series data in order to conform to a predefined structure that was specified during the design phase; and normalizing variable families rather than individual variable instances. The final manuscript, entitled: "Using Time-Series Analysis to Predict Cardiac Arrest in a Pediatric Intensive Care Unit" presents the results that were obtained by applying the theoretical construct and its associated methods (detailed in the first two papers) to the case of cardiac arrest prediction in a pediatric intensive care unit. Our results showed that utilizing the trend analysis from the time series data elements reduced the number of classification errors by 73%. The area under the Receiver Operating Characteristic curve increased from a baseline of 87% to 98% by including the trend analysis. In addition to the performance measures, we were also able to demonstrate that adding raw time series data elements without their associated trend analyses improved classification accuracy as compared to the baseline multivariate model, but diminished classification accuracy as compared to when just the trend analysis features were added (ie, without adding the raw time series data elements). We believe this phenomenon was largely attributable to overfitting, which is known to increase as the ratio of candidate features to class examples rises. Furthermore, although we employed several feature reduction strategies to counteract the overfitting problem, they failed to improve the performance beyond that which was achieved by exclusion of the raw time series elements. Finally, our data demonstrated that pulse oximetry and systolic blood pressure readings tend to start diminishing about 10-20 minutes before an arrest, whereas heart rates tend to diminish rapidly less than 5 minutes before an arrest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A critical problem in radiocarbon dating is the spatial and temporal variability of marine reservoir ages (MRAs). We assessed the MRA evolution during the last deglaciation by numerical modeling, applying a self-consistent iteration scheme in which an existing radiocarbon chronology (derived by Hughen et al., Quat. Sci. Rev., 25, pp. 3216-3227, 2006) was readjusted by transient, 3-D simulations of marine and atmospheric Delta14C. To estimate the uncertainties regarding the ocean ventilation during the last deglaciation, we considered various ocean overturning scenarios which are based on different climatic background states (PD: modern climate, GS: LGM climate conditions). Minimum and maximum MRAs are included in file 'MRAminmax_21-14kaBP.nc'. Three further files include MRAs according to equilibrium simulations of the preindustrial ocean (file 'C14age_preindustrial.nc'; this is an update of our results published in 2005) and of the glacial ocean (files 'C14age_spinupLGM_GS.nc' and 'C14age_spinupLGM_PD.nc').

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, a novel and efficient moving object detection strategy by non-parametric modeling is presented. Whereas the foreground is modeled by combining color and spatial information, the background model is constructed exclusively with color information, thus resulting in a great reduction of the computational and memory requirements. The estimation of the background and foreground covariance matrices, allows us to obtain compact moving regions while the number of false detections is reduced. Additionally, the application of a tracking strategy provides a priori knowledge about the spatial position of the moving objects, which improves the performance of the Bayesian classifier

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Knowledge of pesticide selectivity to natural enemies is necessary for a successful implementation of biological and chemical control methods in integrated pest management (IPM) programs. Diacylhydrazine (DAH)-based ecdysone agonists also known as molting-accelerating compounds (MACs) are considered a selective group of insecticides, and their compatibility with predatory Heteroptera, which are used as biological control agents, is known. However, their molecular mode of action has not been explored in beneficial insects such as Orius laevigatus (Fieber) (Hemiptera: Anthocoridae). RESULTS: In this project in vivo toxicity assays demonstrated that the DAH-based RH-5849, tebufenozide and methoxyfenozide have no toxic effect against O. laevigatus. The ligand-binding domain (LBD) of the ecdysone receptor (EcR) of O. laevigatus was sequenced and a homology protein model was constructed which confirmed a cavity structure with 12 ?-helixes, harboring the natural insect molting hormone 20-hydroxyecdysone. However, docking studies showed that a steric clash occurred for the DAH-based insecticides due to a restricted extent of the ligand-binding cavity of the EcR of O. laevigatus. CONCLUSIONS: The insect toxicity assays demonstrated that MACs are selective for O. laevigatus. The modeling/docking experiments are indications that these pesticides do not bind with the LBD-EcR of O. laevigatus and support that they show no biological effects in the predatory bug. These data help in explaining the compatible use of MACs together with predatory bugs in IPM programs. Keywords: Orius laevigatus, selectivity, diacylhydrazine insecticides, ecdysone receptor, homology modelling, docking studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El objetivo de esta investigación es desarrollar una metodología para estimar los potenciales impactos económicos y de transporte generados por la aplicación de políticas en el sector transporte. Los departamentos de transporte y otras instituciones gubernamentales relacionadas se encuentran interesadas en estos análisis debido a que son presentados comúnmente de forma errónea por la insuficiencia de datos o por la falta de metodologías adecuadas. La presente investigación tiene por objeto llenar este vacío haciendo un análisis exhaustivo de las técnicas disponibles que coincidan con ese propósito. Se ha realizado un análisis que ha identificado las diferencias cuando son aplicados para la valoración de los beneficios para el usuario o para otros efectos como aspectos sociales. Como resultado de ello, esta investigación ofrece un enfoque integrado que incluye un modelo Input-Output de múltiples regiones basado en la utilidad aleatoria (RUBMRIO), y un modelo de red de transporte por carretera. Este modelo permite la reproducción con mayor detalle y realismo del transporte de mercancías que por medio de su estructura sectorial identifica los vínculos de las compras y ventas inter-industriales dentro de un país utilizando los servicios del transporte de mercancías. Por esta razón, el modelo integrado es aplicable a diversas políticas de transporte. En efecto, el enfoque se ha aplicado para estudiar los efectos macroeconómicos regionales de la implementación de dos políticas diferentes en el sistema de transporte de mercancías de España, tales como la tarificación basada en la distancia recorrida por vehículo-kilómetro (€/km) aplicada a los vehículos del transporte de mercancías, y para la introducción de vehículos más largos y pesados de mercancías en la red de carreteras de España. El enfoque metodológico se ha evaluado caso por caso teniendo en cuenta una selección de la red de carreteras que unen las capitales de las regiones españolas. También se ha tenido en cuenta una dimensión económica a través de una tabla Input-Output de múltiples regiones (MRIO) y la base de datos de conteo de tráfico existente para realizar la validación del modelo. El enfoque integrado reproduce las condiciones de comercio observadas entre las regiones usando el sistema de transporte de mercancías por carretera, y que permite por comparación con los escenarios de políticas, determinar las contribuciones a los cambios distributivos y generativos. Así pues, el análisis estima los impactos económicos en cualquier región considerando los cambios en el Producto Interno Bruto (PIB) y el empleo. El enfoque identifica los cambios en el sistema de transporte a través de todos los caminos de la red de transporte a través de las medidas de efectividad (MOEs). Los resultados presentados en esta investigación proporcionan evidencia sustancial de que en la evaluación de las políticas de transporte, es necesario establecer un vínculo entre la estructura económica de las regiones y de los servicios de transporte. Los análisis muestran que para la mayoría de las regiones del país, los cambios son evidentes para el PIB y el empleo, ya que el comercio se fomenta o se inhibe. El enfoque muestra cómo el tráfico se desvía en ambas políticas, y también determina detalles de las emisiones de contaminantes en los dos escenarios. Además, las políticas de fijación de precios o de regulación de los sistemas de transporte de mercancías por carretera dirigidas a los productores y consumidores en las regiones promoverán transformaciones regionales afectando todo el país, y esto conduce a conclusiones diferentes. Así mismo, este enfoque integrado podría ser útil para evaluar otras políticas y otros países en todo el mundo. The purpose of this research is to develop a methodological approach aimed at assessing the potential economic and transportation impacts of transport policies. Transportation departments and other related government parties are interested in such analysis because it is commonly misrepresented for the insufficiency of data and suitable methodologies available. This research is directed at filling this gap by making a comprehensive analysis of the available techniques that match with that purpose. The differences when they are applied for the valuation of user benefits or for other impacts as social matters have been identified. As a result, this research presents an integrated approach which includes both a random utility-based multiregional Input-Output model (RUBMRIO), and a road transport network model. This model accounts for freight transport with more detail and realism because its commodity-based structure traces the linkages of inter-industry purchases and sales that use freight services within a given country. For this reason, the integrated model is applicable to various transport policies. In fact, the approach is applied to study the regional macroeconomic effects of implementing two different policies in the freight transport system of Spain, such as a distance-based charge in vehicle-kilometer (€/km) for Heavy Goods Vehicles (HGVs), and the introduction of Longer and Heavier Vehicles (LHVs) in the road network of Spain. The methodological approach has been evaluated on a case by case basis considering a selected road network of highways linking the capitals of the Spanish regions. It has also considered an economic dimension through a Multiregional Input Output Table (MRIO) and the existing traffic count database used in the model validation. The integrated approach replicates observed conditions of trade among regions using road freight transport systems that determine contributions to distributional and generative changes by comparison with policy scenarios. Therefore, the model estimates economic impacts in any given area by considering changes in Gross Domestic Product (GDP), employment (jobs), and in the transportation system across all paths of the transport network considering Measures of effectiveness (MOEs). The results presented in this research provide substantive evidence that in the assessment of transport policies it is necessary to establish a link between the economic structure of regions and the transportation services. The analysis shows that for most regions in the country, GDP and employment changes are noticeable when trade is encouraged or discouraged. This approach shows how traffic is diverted in both policies, and also provides details of the pollutant emissions in both scenarios. Furthermore, policies, such as pricing or regulation of road freight transportation systems, directed to producers and consumers in regions will promote different regional transformations across the country, and this lead to different conclusions. In addition, this integrated approach could be useful to assess other policies and countries worldwide.