912 resultados para Back-arc Extension
Resumo:
Mineralogy and geochemistry of low-temperature hydrothermal manifestations occurring on the surface of basalts and in their cracks within a submarine volcano in the north-eastern part of the Kuril deep-sea basin have been studied. The following order of isolation of mineral phases has been found out: Fe-rich sulphides (pyrite) - Fe-rich layered silicates (hydromica of celadonite-nontronite type) - amorphous silica (opal) - Fe-oxyhydroxides (goethite) - Mn-oxyhydroxides (vernadite). Sulphide mineralization is of the phenocryst-stockwork type. Finding of pure barite fragments does not exclude presence of hydrothermal exhalations (smokers) on this volcanic structure.
Resumo:
Taupo Volcanic Zone (TVZ), in the North Island, New Zealand, is arguably the most active Quaternary rhyolitic system in the world. Numerous and widespread rhyolitic tephra layers, sourced from the TVZ, form valuable chronostratigraphic markers in onshore and offshore sedimentary sequences. In deep-sea cores from Ocean Drilling Program (ODP) Leg 181 Sites 1125, 1124, 1123 and 1122, located east of New Zealand, ca 100 tephra beds are recognised post-dating the Plio-Pleistocene boundary at 1.81 Ma. These tephras have been dated by a combination of magnetostratigraphy, orbitally tuned stable-isotope data and isothermal plateau fission track ages. The widespread occurrence of ash offshore to the east of New Zealand is favoured by the small size of New Zealand, the explosivity of the mainly plinian and ignimbritic eruptions and the prevailing westerly wind field. Although some tephras can be directly attributed to known TVZ eruptions, there are many more tephras represented within ODP-cores that have yet to be recognised in near-source on-land sequences. This is due to proximal source area erosion and/or deep burial as well as the adverse effect of vapour phase alteration and devitrification within near-source welded ignimbrites. Despite these difficulties, a number of key deep-sea tephras can be reliably correlated to equivalent-aged tephra exposed in uplifted marine back-arc successions of Wanganui Basin where an excellent chronology has been developed based on magnetostratigraphy, orbitally calibrated sedimentary cycles and isothermal plateau fission track ages on tephra. Significant Pleistocene tephra markers include: the Kawakawa, Omataroa, Rangitawa/Onepuhi, Kaukatea, Kidnappers-B, Potaka, Unit D/Ahuroa, Ongatiti, Rewa, Sub-Rewa, Pakihikura, Ototoka and Table Flat Tephras. Six other tephra layers are correlated between ODP-core sites but have yet to be recognised within onshore records. The identification of Pleistocene TVZ-sourced tephras within the ODP record, and their correlation to Wanganui Basin and other onshore sites is a significant advance as it provides: (1) an even more detailed history of the TVZ than can be currently achieved from the near-source record, (2) a high-resolution tephrochronologic framework for future onshore-offshore paleoenvironmental reconstructions, and (3) well-dated tephra beds correlated from the offshore ODP sites with astronomically tuned timescales provide an opportunity to critically evaluate the chronostratigraphic framework for onshore Plio-Pleistocene sedimentary sequences (e.g. Wanganui Basin, cf. Naish et al. (1998, doi:10.1016/S0277-3791(97)00075-9).
Resumo:
Andesitic volcaniclastic sandstones of Middle Eocene age recovered from DSDP Sites 445 and 446, a back-arc basin, contain clinoptilolite, heulandite and analcite as a pore-filling cement. Clinoptilolite and heulandite at Sites 445 and 446 contain different chemical composition from other deep-sea clinoptilolites and heulandites. The dominant cation of both clinoptilolite and heulandite is Na+ ion activity in pore water was greater at the time of their formation. Volcanic glass has acted as a precursor for both clinoptilolite and heulandite at Sites 445 and 446. Biogenic silica is also suggested as a precursor. High Na+ ion activity in pore water also helped to transform clinoptilolite and heulandite to analcite downhole. The necessary Na+ ions for this clinoptilolite, heulandite and analcite at Sites 445 and 446 might have been provided by hydrothermal circulation of seawater through more permeable sandstones deposited during early stages of back-arc basin rifting.
Resumo:
Thermogenic hydrocarbons, formed by the thermal alteration of organic matter, are encountered in several piston core stations in the King George Basin, Anatarctica. These hemipelagic sediments are being deposited in an area of active hydrothermalism, associated with the back-arc spreading in the Bransfield Strait. The lateral extent of sediments infiltrated by the hydrothermally influenced interstitial fluids is characterized by basalt diapiric intrusions and is delineated by an acoustically turbid zone in the sediments of the eastern part of the basin. Iron-sulphide-bearing veins and fractures cut across the sediment in several cores; they appear to be conduits for flow of hydrothermally altered fluids. These zones have the highest C2+ and ethene contents. The thermogenic hydrocarbons have molecular C1/(C2 + C3) ratios typically < 50 and delta13CH4 values between -38? and -48?, indicating an organic source which has undergone strong thermal stress. Several sediment cores also have mixed gas signatures, which indicate the presence of substantial amounts of bacterial gas, predominantly methane. Hydrocarbon generation in the King George Basin is thought to be a local phenomenon, resulting from submarine volcanism with temperatures in the range 70-150°C. There are no apparent seepages of hydrocarbons into the water column, and it is not believed that significant accumulation of thermogenic hydrocarbons reside in the basin.
Resumo:
Microchemical analyses of rare earth element (REE) concentrations and Sr and S isotope ratios of anhydrite are used to identify sub-seafloor processes governing the formation of hydrothermal fluids in the convergent margin Manus Basin, Papua New Guinea. Samples comprise drill-core vein anhydrite and seafloor massive anhydrite from the PACMANUS (Roman Ruins, Snowcap and Fenway) and SuSu Knolls (North Su) active hydrothermal fields. Chondrite-normalized REE patterns in anhydrite show remarkable heterogeneity on the scale of individual grains, different from the near uniform REEN patterns measured in anhydrite from mid-ocean ridge deposits. The REEN patterns in anhydrite are correlated with REE distributions measured in hydrothermal fluids venting at the seafloor at these vent fields and are interpreted to record episodes of hydrothermal fluid formation affected by magmatic volatile degassing. 87Sr/86Sr ratios vary dramatically within individual grains between that of contemporary seawater and that of endmember hydrothermal fluid. Anhydrite was precipitated from a highly variable mixture of the two. The intra-grain heterogeneity implies that anhydrite preserves periods of contrasting hydrothermal versus seawater dominant near-seafloor fluid circulation. Most sulfate d34S values of anhydrite cluster around that of contemporary seawater, consistent with anhydrite precipitating from hydrothermal fluid mixed with locally entrained seawater. Sulfate d34S isotope ratios in some anhydrites are, however, lighter than that of seawater, which are interpreted as recording a source of sulfate derived from magmatic SO2 degassed from underlying felsic magmas in the Manus Basin. The range of elemental and isotopic signatures observed in anhydrite records a range of sub-seafloor processes including high-temperature hydrothermal fluid circulation, varying extents of magmatic volatile degassing, seawater entrainment and fluid mixing. The chemical and isotopic heterogeneity recorded in anhydrite at the inter- and intra-grain scale captures the dynamics of hydrothermal fluid formation and sub-seafloor circulation that is highly variable both spatially and temporally on timescales over which hydrothermal deposits are formed. Microchemical analysis of hydrothermal minerals can provide information about the temporal history of submarine hydrothermal systems that are variable over time and cannot necessarily be inferred only from the study of vent fluids.
Resumo:
Bragança and Morais Massifs are part of the mega-klippen ensemble of NW Iberia, comprising a tectonic pile of four allochthonous units stacked above the Central-Iberian Zone autochthon. On top of this pile, the Upper Allochthonous Terrane (UAT) includes different high-grade metamorphic series whose age and geodynamic meaning are controversial. Mafic granulites provided U–Pb zircon ages at 399±7 Ma, dating the Variscan emplacement of UAT. In contrast,U–Pb zircon ages of ky- and hb-eclogites, felsic/intermediate HP/HT-granulites and orthogneisses (ca. 500–480 Ma) are identical to those of gabbros (488 ± 10 Ma) and Grt-pyroxenites (495 ± 8 Ma) belonging to a mafic/ultramafic igneous suite that records upper mantle melting and mafic magma crustal underplating at these times. Gabbros intrude the high-grade units of UAT and did not underwent the HP metamorphic event experienced by eclogites and granulites. These features and the zircon dates resemblance among different lithologies, suggest that extensive age resetting of older events may have been correlative with the igneous suite emplacement/crystallisation. Accordingly, reconciliation of structural, petrological and geochronological evidence implies that the development and early deformation of UAT high-grade rocks should be ascribed to an orogenic cycle prior to ≈500 Ma. Undisputable dating of this cycle is impossible, but the sporadic vestiges of Cadomian ages cannot be disregarded. The ca. 500–480 Ma time-window harmonises well with the Lower Palaeozoic continental rifting that trace the VariscanWilson Cycle onset and the Rheic Ocean opening. Subsequent preservation of the high heat-flowregime, possibly related to the Palaeotethys back-arc basin development (ca. 450–420 Ma), would explain the 461 ± 10 Ma age yielded by some zircon domains in felsic granulites, conceivably reflecting zircon dissolution/ recrystallisation till Ordovician times, long before the Variscan paroxysm (ca. 400–390 Ma). This geodynamic scenario suggests also that UAT should have been part of Armorica before its emplacement on top of Iberia after Palaeotethys closure.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Geociências, Pós-Graduação em Geologia, 2016.