956 resultados para Babassu palm forests


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alimentary preferences of five species of wood-feeding termites of the genus Nasutitermes that coexist in the inundated forests of the floodplains of the Amazon river várzea for species of fresh wood and for wood in different stages of decomposition was evaluated in laboratory tests. Wood of low density was generally preferred; the decay stages were preferred over fresh wood. The five termite species differ in the amplitude of their choices, indicating a strong differentiation in food choice among them. Differences in feeding preferences may be a niche-separating factor for these five Nasutitermes species of the floodplains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Várzea and terra-firme forests in the lower course of the Amazon were compared in terms of forest structure, wood volume increments and forest biomass. The wood volume of várzea forests was smaller than that of terra-firme forests, particularly when severe human intervention such as the cultivation of açaí palm occurred. The difference was even greater in the forest weight comparison because of the lower wood density of várzea trees. These trees are not directly influenced by water stress during the dry season, while late wood with a high density is formed in the terra-firme trees. The annual forest disappearance area due to firewood for tile factories was estimated to be about 276 ha on the island investigated, which had an area of 36,200 ha. Assuming that the forests are rotatively cultivated every 25 to 30 years, the total deforestation area is 6,870-6,948 ha in 25 years and 8,244~8,337 ha in 30 years. This result means that the balance between forest biomass and utilization is not in crisis, however, this balance might be lost as long as substitutive energy such as electricity is not supplied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to test the hypothesis that the monodominant non-pioneer Peltogyne gracilipes, typically does not suffer density-dependent herbivory (Janzen-Connell model). Two components of intraspecific variation in leaf herbivory were measured: 1) the variation between individuals in the population at the same time and 2) the temporal variation in rates of damage to each individual. The study was carried out on Maracá Island, Roraima, Brazil in three plots (50 m χ 50 m) in each of three forest types: Peltogyne-rich forest (PRF), Peltogyne-poor forest (PPF), and forest without Peltogyne (FWP). Two other non-pioneer species (Ecclinusa guianensis and Pradosia surinamensis) were chosen for comparison because they were fairly abundant and their seedlings could be readily identified. The values of leaf area removed by herbivores of trees and seedlings of the three study species were in the range reported for other tropical tree species (2-16%, standing damage). There were no differences within species between forests. However, there was a significant difference among species but this was not correlated with seedling density. Peltogyne seedlings showed no evidence of density-dependent herbivory as predicted by the Janzen-Connell model despite the fact that adult trees were observed to suffer a mass defoliation in April 1992. This result suggests that Peltogyne may be dominant partly due to escape from herbivory in the early stages of its life although it may suffer occasional mass defoliation as an adult.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates patterns of forest structure and tree species diversity in an anthropogenic palm grove and undisturbed areas at the seasonally-dry Pinkaití research station, in the Kayapó Indigenous Area. This site, managed by the Conservation International do Brasil, is the most southeastern site floristically surveyed in the Amazon until now. The secondary and a nearby undisturbed forest were sampled in a group of 52 floristic plots of 0.0625-ha (25x25-m) where all trees with DBH > 10 cm were measured and identified. The analyses were complemented with other two floristic plots of 1-ha (10x1000-m). The present study has shown that the Pinkaití, like other seasonally-dry forests, have great heterogeneity in forest structure and composition, associated with biotic characteristics of the most important tree species, natural disturbance and history of land-use. The palm grove, moderately dominated by the arborescent palm Attalea maripa (Aubl.) Mart., presented high tree species diversity and was floristically similar to undisturbed forests at the study site. It is discussed the importance of large arborescent palms for the seasonally-dry Amazon forests regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite a natural history interest in the early 1900s, relatively little ecological research has been carried out in the Rio Purús basin of central Amazonia, Brazil. Here we describe a new study area in the region of Lago Uauaçú with an emphasis on the climate, forest structure and composition, and soil characteristics between adjacent unflooded (terra firme) and seasonally inundated forests; situated within both the white-water (várzea) and black-water (igapó) drainage systems that dominate the landscape. The climate was found to be typical of that of the central Amazon. Várzea forest soils had high concentrations of nutrients, while terra firme and igapó soils were comparatively nutrient-poor. Terra firme forests were the most floristically diverse forest type, whereas várzea was intermediate, and igapó the most species-poor. The Lecythidaceae was the most important family in terra firme while the Euphorbiaceae was the most important in both várzea and igapó. There were significant differences between forest types in terms of number of saplings, canopy cover and understorey density. In contrasting our results with other published information, we conclude that the Lago Uauaçú region consists of a typical central Amazonian forest macro-mosaic, but is a unique area with high conservation value due to the intimate juxtaposition of terra firme, várzea and igapó forests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conflicting opinions are recorded in the literature concerning the suitability of Amazon lands for sustainable agriculture following deforestation. This article has been written to shed light on this question by summarizing climate, landform, soil and vegetation features from the findings of a land resource study of the Brazilian state of Rondônia in south-west Amazonia. The work, which followed the World Soils and Terrain Digital Database (SOTER) methodology, was financed by the World Bank. During the course of the survey special emphasis was given to studying soils; 2914 profiles were analyzed and recorded. The study identified a complex pattern of land units with clear differences in climate, landform, soils and native vegetation. Forested areas mosaic with lesser areas of natural savannas. The latter occur on both poorly-drained and well-drained, albeit nutrient deficient sandy soils. The tallest and most vigorous forests or their remnants were seen growing on well-drained soils formed from nutrient-rich parent materials. Many of these soils could, or are being used for productive agriculture. Soils developed on nutrient-poor parent materials support forests that are significantly lower in height, and would require large lime and fertilizer inputs for agriculture. Low forests with high palm populations and minor areas of wet land savannas cover the poorly drained soils. It is evident that forest clearing in the past was indiscriminant; this cannot be condoned. The diversity of land conditions found throughout Rondônia would suggest that many past studies in the Amazon have simply been too broad to identify significant soil differences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonally dry evergreen forests in southeast Pará, Brazil are transitional between taller closed forests of the interior Amazon Basin and woodland savannas (cerrados) of Brazil's south-central plains. We describe abiotic and biotic gradients in this region near the frontier town of Redenção where forest structure and composition grade subtly across barely undulating topography. Annual precipitation averaged 1859 mm between 1995-2001, with nearly zero rainfall during the dry season months of June August. Annual vertical migrations of deep-soil water caused by seasonal rainfall underlie edaphic and floristic differences between high- and low-ground terrain. Low-ground soils are hydromorphic, shaped by perching water tables during the wet season, pale gray, brown, or white in color, with coarse texture, low moisture retention during the dry season, and relatively high macro-nutrient status in the surface horizons. Forest canopies on low ground are highly irregular, especially along seasonal streams, while overstory community composition differs demonstrably from that on high ground. High-ground soils are dystrophic, well-drained through the wet season, brown or red-yellow in color, with finer texture, higher moisture retention, and low macro-nutrient status in the surface horizons compared to low-ground soils. Forest canopies are, on average, taller, more regular, and more closed on high ground. Low-ground areas can be envisioned as energy and nutrient sinks, where, because of hydrologic cycles, canopy disturbance likely occurs more frequently than at high-ground positions if not necessarily at larger scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes the establishment of a second diameter measuring standard at 30cm shoot extension ('diam30') as input variable for allometric biomass estimation of small and mid-sized plant shoots. This diameter standard is better suited than the diameter at breast height (DBH, i.e. diameter at 1.30m shoot extension) for adequate characterization of plant dimensions in low bushy vegetation or in primary forest undergrowth. The relationships between both diameter standards are established based on a dataset of 8645 tree, liana and palm shoots in secondary and primary forests of central Amazonia (ranging from 1-150mm dbh). Dbh can be predicted from the diam(30) with high precision, the error introduced by diameter transformation is only 2-3% for trees and palms, and 5% for lianas. This is well acceptable for most field study purposes. Relationships deviate slightly from linearity and differ between growth forms. Relationships were markedly similar for different vegetation types (low secondary regrowth vs. primary forests), soils, and selected genera or species. This points to a general validity and applicability of diameter transformations for other field studies. This study provides researchers with a tool for the allometric estimation of biomass in low or structurally heterogeneous vegetation. Rather than applying a uniform diameter standard, the measuring position which best represents the respective plant can be decided on shoot-by-shoot. Plant diameters measured at 30cm height can be transformed to dbh for subsequent allometric biomass estimation. We recommend the use of these diameter transformations only for plants extending well beyond the theoretical minimum shoot length (i.e., >2m height). This study also prepares the ground for the comparability and compatability of future allometric equations specifically developed for small- to mid-sized vegetation components (i.e., bushes, undergrowth) which are based on the diam(30) measuring standard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Palm oil (PO) is a very important commodity for many countries and especially Indonesia and Malaysia who are the predominant producers. PO is used in ca. 30% of supermarket foods, cosmetics, cooking and as biodiesel. The growth of oil palms in plantations is controversial as the production methods contribute to climate change and cause environmental damage [1]. The plant is subjected to a devastating disease in these two countries caused by the white rot fungus Ganoderma. There are no satisfactory methods to diagnose the disease in the plant as they are too slow and/or inaccurate. The lipid compound ergosterol is unique to fungi and is used to measure growth especially in solid substrates. We report here on the use of ergosterol to measure the growth of Ganoderma in oil palms using HPLC and TLC methods [2]. The method is rapid and correlates well with other methods and is capable of being used on-site, hence improving the speed of analysis and allowing remedial action. Climate change will affect the health of OP [1] and rapid detection methods will be increasingly required to control the disease. [1] Paterson, RRM, Kumar, L, Taylor, S, Lima N. Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia. Scientific Reports, 5, 2015, 14457. [2] Muniroh, MS, Sariah M, Zainal Abidin, MA, Lima, N, Paterson, RRM. Rapid detection of Ganoderma-infected oil palms by microwave ergosterol extraction with HPLC and TLC. Journal of Microbiological Methods, 100, 2014, 143–147.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high tree diversity and vast extent of Amazonian forests challenge our understanding of how tree species abundance and composition varies across this region. Information about these parameters, usually obtained from tree inventories plots, is essential for revealing patterns of tree diversity. Numerous tree inventories plots have been established in Amazonia, yet, tree species composition and diversity of white-sand and terra-firme forests of the upper Rio Negro still remain poorly understood. Here, we present data from eight new one-hectare tree inventories plots established in the upper Rio Negro; four of which were located in white-sand forests and four in terra-firme forests. Overall, we registered 4703 trees > 10 cm of diameter at breast height. These trees belong to 49 families, 215 genera, and 603 species. We found that tree communities of terra-firme and white-sand forests in the upper Rio Negro significantly differ from each other in their species composition. Tree communities of white-sand forests show a higher floristic similarity and lower diversity than those of terra-firme forests. We argue that mechanisms driving differences between tree communities of white-sand and terra-firme forests are related to habitat size, which ultimately influences large-scale and long-term evolutionary processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global scale analyses of soil and foliage δ15N have found positive relationships between δ15N and ecosystem N loss (suggesting an open N cycle) and a negative relationship between δ15N and water availability. We show here that soils and leaves from tropical heath forests are depleted in 15N relative to 'typical' forests suggesting that they have a tight N cycle and are therefore limited by N rather than by, often suggested, water availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White sand forests, although low in nutrients, are characterized not only by several endemic species of plants but also by several monodominant species. In general, plants in this forest have noticeably thin stems. The aim of this work was to elaborate a parallel dichotomous key for the identification of Angiosperm tree species occurring on white sand forests at the Allpahuayo Mishana National Reserve, Loreto, Peru. We compiled a list of species from several publications in order to have the most comprehensive list of species that occur on white sand forest. We found 219 species of Angiosperm, the more abundant species were Pachira brevipes (26.27%), Caraipa utilis (17.90%), Dicymbe uaiparuensis (13.27%), Dendropanax umbellatus (3.28%), Sloanea spathulata (2.52%), Ternstroemia klugiana (2.30%), Haploclathra cordata (2.28%), Parkia igneiflora (1.20%), Emmotum floribundum (1.06%), Ravenia biramosa (1.04%) among others. Most species of white sand forests can be distinguished using characteristics of stems, branches and leaves. This key is very useful for the development of floristic inventories and related projects on white sand forests from Allpahuayo Mishana National Reserve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrient recycling in the forest is linked to the production and decomposition of litter, which are essential processes for forest maintenance, especially in regions of nutritionally poor soils. Human interventions in forest such as selecttive logging may have strong impacts on these processes. The objectives of this study were to estimate litterfall production and evaluate the influence of environmental factors (basal area of vegetation, plant density, canopy cover, and soil physicochemical properties) and anthropogenic factors (post-management age and exploited basal area) on this production, in areas of intact and exploited forest in southern Amazonia, located in the northern parts of Mato Grosso state. This study was conducted at five locations and the average annual production of litterfall was 10.6 Mg ha-1 year-1, higher than the values for the Amazon rainforest. There were differences in litterfall productions between study locations. Effects of historical logging intensity on litterfall production were not significant. Effects of basal area of vegetation and tree density on litterfall production were observed, highlighting the importance of local vegetation characteristics in litterfall production. This study demonstrated areas of transition between the Amazonia-Cerrado tend to have a higher litterfall production than Cerrado and Amazonia regions, and this information is important for a better understanding of the dynamics of nutrient and carbon cycling in these transition regions.