999 resultados para BaTiO3 and titanates


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we have synthesized Fe, Co and Ni doped BaTiO3 catalyst by a wet chemical synthesis method using oxalic acid as a chelating agent. The concentration of the metal dopant varies from 0 to 5 mol% in the catalysts. The physical and chemical properties of doped BaTiO3 catalysts were studied using various analytical methods such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), BET surface area and Transmission electron microscopy (TEM). The acidic strength of the catalysts was measured using a n-butylamine potentiometric titration method. The bulk BaTiO3 catalyst exhibits a tetragonal phase with the P4mm space group. A structural transition from tetrahedral to cubic phase was observed for Fe, Co and Ni doped BaTiO3 catalysts with an increase in doped metal concentration from 1 to 5 mol%. The particle sizes of the catalysts were calculated from TEM images and are in the range of 30-80 nm. All the catalysts were tested for the catalytic reduction of nitrobenzene to azoxybenzene. The BaTiO3 catalyst was found to be highly active and less selective compared to the doped catalysts which are active and highly selective towards azoxybenzene. The increase in selectivity towards azoxybenzene is due to an increase in acidic strength and reduction ability of the doped metal. It was also observed that the nature of the metal dopant and their content at the B-site has an impact on the catalytic reduction of nitrobenzene. The Co doped BaTiO3 catalyst showed better activity with only 0.5 mol% doping than Fe and Ni doped BaTiO3 catalysts with maximum nitrobenzene conversion of 91% with 78% selectivity to azoxybenzene. An optimum Fe loading of 2.5 mol% in BaTiO3 is required to achieve 100% conversion with 93% selectivity whereas Ni with 5 mol% showed a conversion of 93% and a azoxybenzene selectivity of 84%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-ray photoelectron spectroscopy has been used to measure the valence band offset of the ZnO/BaTiO3 heterojunction grown by metal-organic chemical vapor deposition. The valence band offset (VBO) is determined to be 0.48 +/- 0.09 eV, and the conduction band offset (CBO) is deduced to be about 0.75 eV using the band gap of 3.1 eV for bulk BaTiO3. It indicates that a type-II band alignment forms at the interface, in which the valence and conduction bands of ZnO are concomitantly higher than those of BaTiO3. The accurate determination of VBO and CBO is important for use of semiconductor/ferroelectric heterojunction multifunctional devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La2Zr2O7 (LZ) is a promising thermal barrier coating material for the high-temperature applications, which could be significantly toughened by the BaTiO3 piezoelectric phase incorporated into the matrix. The composites of xBaTiO(3)/(l-x)LZ (x=5, 10, 15, 20 vol%, LZ-x-BaTiO3) were densified by means of high-pressure sintering (HPS) under a pressure of 4.5 GPa at 1450 degrees C for 10 min, by which a high relative density above 93% could be obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyimide hybrid films containing bimetalic compounds were obtained by codoping poly(amic acid) with a barium and titanium precursor prepared from BaCO3, Ti(OBu)(4), and lactic acid followed by casting and thermal curing. FTIR, WAXD, and XPS measurements showed that barium and titanium precursor could be transformed to BaTiO3 at a temperature above 650 degreesC, while the mixed oxides were only found in hybrid films. The measurements of TEM and AFM indicated a homogeneous distribution of inorganic phase with particle sizes less than 50 nm. The hybrid films exhibited fairly high thermal stability, good optical transparency, and promising mechanical properties. The incorporation of 10 wt % barium and titanium oxide lowered surface and volume electrical resistivity by 2 and 5 orders, respectively, increasing dielectric constant from 3.5 to 4.2 and piezoelectric constant from 3.8 to 5.2 x 10(-12) c/N, relative to the nondoped polyimide film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We invoke the onset of dislocations along the BaTiO3-SrTiO3 interface as reported by Wunderlich et al. to explain the non-monotonic behaviour of the dielectric permittivity as a function of superlattice periodicity and the less than four-fold in-plane symmetry at the dielectric maximum. At a periodicity of about 10/10, depending on composition and growth mechanism, several groups report a maximum of dielectric permittivity. In addition to that we observe in-plane symmetry less than tetragonal for 10/10 superlattices by HR-XRD, in contrast to initial low-resolution data from Tabata et al. thus challenging the assumption of unrelaxed strain all the way through the superlattice. The aim of this article is to link both effects to the increasing volume fraction of conducting layers close to the interface in series with the superlattice layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An attempt has been made to unequivocally identify the influence that inhomogeneous strain fields, surrounding point defects, have on the functional properties of thin film ferroelectrics. Single crystal thin film lamellae of BaTiO3 have been integrated into capacitor structures, and the functional differences between those annealed in oxygen and those annealed in nitrogen have been mapped. Key features, such as the change in the paraelectric-ferroelectric phase transition from first to second order were noted and found to be consistent with mean field modeling predictions for the effects of inhomogeneous strain. Switching characteristics appeared to be unaffected, suggesting that point defects have a low efficacy in domain wall pinning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Naturally occurring boundaries between bundles of 90o stripe domains, which form in BaTiO3 lamellae on cooling through the Curie Temperature, have been characterised using both piezoresponse force microscopy (PFM) and scanning transmission electron microscopy (STEM). Detailed interpretation of the dipole configurations present at these boundaries (using data taken from PFM) shows that, in the vast majority of cases, they are composed of simple zigzag 180° domain walls. Topological information from STEM shows that, occasionally, domain bundle boundaries can support chains of dipole flux closure and quadrupole nanostructures, but these kinds of boundaries are comparatively rare; when such chains do exist, it is notable that singularities at the cores of the dipole structures are avoided. The symmetry of the boundary shows that diads and centres of inversion exist at positions where core singularities should have been expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over 60 years ago, Charles Kittel predicted that quadrant domains should spontaneously form in small ferromagnetic platelets. He expected that the direction of magnetization within each quadrant should lie parallel to the platelet surface, minimizing demagnetizing fields, and that magnetic moments should be configured into an overall closed loop, or flux-closure arrangement. Although now a ubiquitous observation in ferromagnets, obvious flux-closure patterns have been somewhat elusive in ferroelectric materials. This is despite the analogous behaviour between these two ferroic subgroups and the recent prediction of dipole closure states by atomistic simulations research. Here we show Piezoresponse Force Microscopy images of mesoscopic dipole closure patterns in free-standing, single-crystal lamellae of BaTiO3. Formation of these patterns is a dynamical process resulting from system relaxation after the BaTiO3 has been poled with a uniform electric field. The flux-closure states are composed of shape conserving 90° stripe domains which minimize disclination stresses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of an ongoing programme to evaluate the extent to which external morphology alters domain wall mobility in ferroelectrics, the electrical switching characteristics of single-crystal BaTiO3 nanorods and thin film plates have been measured and compared. It was found that ferroelectric nanorods were more readily switched than thin plates; increasing the shape constraint therefore appears to enhance switchability. This observation is broadly consistent with previous work, in which local notches patterned along the length of nanorods enhanced switching (McMillen et al 2010 Appl. Phys. Lett. 96 042904), while antinotches had the opposite effect (McQuaid et al 2010 Nano Lett. 10 3566). In this prior work, local enhancement and denudation of the electric field was expected at the notch and antinotch sites, respectively, and this was thought to be the reason for the differences in switching behaviour observed. However, for the simple nanorods and plates investigated here, no differences in the electric field distributions are expected. To rationalise the functional measurements, domain development during switching was imaged directly by piezoresponse force microscopy. A two-stage process was identified, in which narrow needle-like reverse domains initially form across the entire interelectrode gap and then subsequently coarsen through domain wall propagation perpendicular to the applied electric field. To be consistent with the electrical switching data, we suggest that the initial formation of needle domains occurs more readily in the nanorods than in the plates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Naturally occurring boundaries between bundles of 90° stripe domains, which form in BaTiO3 lamellae on cooling through the Curie Temperature, have been characterized using both piezoresponse force microscopy (PFM) and scanning transmission electron microscopy (STEM). Detailed interpretation of the dipole configurations present at these boundaries (using data taken from PFM) shows that in the vast majority of cases they are composed of simple zigzag 180° domain walls. Topological information from STEM shows that occasionally domain bundle boundaries can support chains of dipole flux closure and quadrupole nanostructures, but these kinds of boundaries are comparatively rare; when such chains do exist, it is notable that singularities at the cores of the dipole
structures are avoided. The symmetry of the boundary shows that diads and centers of inversion exist at positions where core singularities should have been expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the magnetic and electrical characteristics of polycrystalline FeTiO3 synthesized at high pressure that is isostructural with acentric LiNbO3 (LBO). Piezoresponse force microscopy, optical second harmonic generation, and magnetometry demonstrate ferroelectricity at and below room temperature and weak ferromagnetism below ~120??K. These results validate symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initial growth mechanism of epitaxial BaTiO3 films is studied by combined application of atomic force microscopy, cross sectional high-resolution transmission electron microscopy, and x-ray diffraction. Epitaxial BaTiO3 thin films were grown by pulsed laser deposition on vicinal Nb-doped SrTiO3 (SrTiO3:Nb) (001) substrates with well-defined terraces. X-ray diffraction and cross sectional high-resolution transmission electron microscopy investigations revealed well-defined epitaxial films and a sharp interface between BaTiO3 films and SrTiO3:Nb substrates. The layer-then-island (Stranski-Krastanov mode) growth mechanism observed by analyzing the morphology of a sequence of films with increasing amount of deposited material has been confirmed by microstructure investigations. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A "top-down" approach using a-beam lithography and a "bottom-up" one using self-assembly methods were used to fabricate ferroelelectric Pb(Zr,Ti)O-3, SrBi2Ta2O9 and BaTiO3 nanostructures with lateral sizes in the range of 30 nm to 100 nm. Switching of single sub-100 nm cells was achieved and piezoelectric hysteresis loops were recorded using a scanning force microscope working in piezoresponse mode. The piezoelectricity and its hysteresis acquired for 100 nm PZT cells demonstrate that a further decrease in lateral size under 100 nm appears to be possible and that the size effects are not fundamentally limiting on increase density of non-volatile ferroelectric memories in the Gbit range.