897 resultados para BOLD (Blood Oxygen Level-Dependent)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial independent component analysis (sICA) of functional magnetic resonance imaging (fMRI) time series can generate meaningful activation maps and associated descriptive signals, which are useful to evaluate datasets of the entire brain or selected portions of it. Besides computational implications, variations in the input dataset combined with the multivariate nature of ICA may lead to different spatial or temporal readouts of brain activation phenomena. By reducing and increasing a volume of interest (VOI), we applied sICA to different datasets from real activation experiments with multislice acquisition and single or multiple sensory-motor task-induced blood oxygenation level-dependent (BOLD) signal sources with different spatial and temporal structure. Using receiver operating characteristics (ROC) methodology for accuracy evaluation and multiple regression analysis as benchmark, we compared sICA decompositions of reduced and increased VOI fMRI time-series containing auditory, motor and hemifield visual activation occurring separately or simultaneously in time. Both approaches yielded valid results; however, the results of the increased VOI approach were spatially more accurate compared to the results of the decreased VOI approach. This is consistent with the capability of sICA to take advantage of extended samples of statistical observations and suggests that sICA is more powerful with extended rather than reduced VOI datasets to delineate brain activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Lead exposure is associated with low birth-weight. The objective of this study is to determine whether lead exposure is associated with lower body weight in children, adolescents and adults. METHODS We analyzed data from NHANES 1999-2006 for participants aged ≥3 using multiple logistic and multivariate linear regression. Using age- and sex-standardized BMI Z-scores, overweight and obese children (ages 3-19) were classified by BMI ≥85 th and ≥95 th percentiles, respectively. The adult population (age ≥20) was classified as overweight and obese with BMI measures of 25-29.9 and ≥30, respectively. Blood lead level (BLL) was categorized by weighted quartiles. RESULTS Multivariate linear regressions revealed a lower BMI Z-score in children and adolescents when the highest lead quartile was compared to the lowest lead quartile (β (SE)=-0.33 (0.07), p<0.001), and a decreased BMI in adults (β (SE)=-2.58 (0.25), p<0.001). Multiple logistic analyses in children and adolescents found a negative association between BLL and the percentage of obese and overweight with BLL in the highest quartile compared to the lowest quartile (OR=0.42, 95% CI: 0.30-0.59; and OR=0.67, 95% CI: 0.52-0.88, respectively). Adults in the highest lead quartile were less likely to be obese (OR=0.42, 95% CI: 0.35-0.50) compared to those in the lowest lead quartile. Further analyses with blood lead as restricted cubic splines, confirmed the dose-relationship between blood lead and body weight outcomes. CONCLUSIONS BLLs are associated with lower body mass index and obesity in children, adolescents and adults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

4HPR is a synthetic retinoid that has shown chemopreventive and therapeutic efficacy against premalignant and malignant lesions including oral leukoplakia, ovarian and breast cancer, and neuroblastoma. 4HPR induces apoptosis in various cancer cells and production of reactive oxygen species (ROS) has been suggested as a possible cause underlying these effects. However, the mechanisms governing these effects by 4HPR are not fully elucidated. In this study, we explored the mechanisms of 4HPR-induced ROS increase and apoptosis in human cancer cells. ^ First, we identified genes modulated by 4HPR using oligonucleotide gene expression arrays and found that they fall into specific functional canonical pathways and gene networks using Ingenuity Pathways Analysis®. Further analysis has shown that 4HPR induced up-regulation of Endoplasmic Reticulum (ER)-related genes such as Heat shock proteins 70 and 90 and the transcriptional factor, GADD153. These findings were validated using quantitative real-time PCR. ^ Second, we found that 4HPR induced extensive ER stress evidenced by dilation of the ER and endoribonuclease-mediated splicing and activation of the transcriptional factor, XBP-1. In addition, 4HPR induced the up-regulation of various ER stress-related genes and their protein products, as well as cleavage and activation of the ER specific Caspase-4. Concomitantly with XBP-1 splicing, all of these effects were dependent on ROS generation by 4HPR. Furthermore, chemical inhibition and RNA interference studies revealed a novel pro-apoptotic role for HSP70/A1A in 4HPR-mediated apoptosis. ^ Third, we observed rapid activation of the small GTPase Rac by 4HPR which was upstream of ROS generation. Inhibition of Rac activity or silencing of its expression by RNA interference inhibited ROS generation and apoptosis induction by 4HPR. siRNA targeting PAK1 and expression of a dominant negative Rac, decreased 4HPR-mediated ROS generation, while expression of a constitutive active Rac increased basal and 4HPR-induced ROS generation and PARP cleavage. Furthermore, metastatic cancer cells exhibited higher Rac activation, ROS generation, and cell growth inhibition due to 4HPR exposure compared to their primary cancer cell counterparts. ^ These findings provide novel insights into 4HPR-mediated ROS generation and apoptosis induction and support the use of ROS inducing agents such as 4HPR against metastatic cancer cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern functional neuroimaging methods, such as positron-emission tomography (PET), optical imaging of intrinsic signals, and functional MRI (fMRI) utilize activity-dependent hemodynamic changes to obtain indirect maps of the evoked electrical activity in the brain. Whereas PET and flow-sensitive MRI map cerebral blood flow (CBF) changes, optical imaging and blood oxygenation level-dependent MRI map areas with changes in the concentration of deoxygenated hemoglobin (HbR). However, the relationship between CBF and HbR during functional activation has never been tested experimentally. Therefore, we investigated this relationship by using imaging spectroscopy and laser-Doppler flowmetry techniques, simultaneously, in the visual cortex of anesthetized cats during sensory stimulation. We found that the earliest microcirculatory change was indeed an increase in HbR, whereas the CBF increase lagged by more than a second after the increase in HbR. The increased HbR was accompanied by a simultaneous increase in total hemoglobin concentration (Hbt), presumably reflecting an early blood volume increase. We found that the CBF changes lagged after Hbt changes by 1 to 2 sec throughout the response. These results support the notion of active neurovascular regulation of blood volume in the capillary bed and the existence of a delayed, passive process of capillary filling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cortical spreading depression (CSD) has been suggested to underlie migraine visual aura. However, it has been challenging to test this hypothesis in human cerebral cortex. Using high-field functional MRI with near-continuous recording during visual aura in three subjects, we observed blood oxygenation level-dependent (BOLD) signal changes that demonstrated at least eight characteristics of CSD, time-locked to percept/onset of the aura. Initially, a focal increase in BOLD signal (possibly reflecting vasodilation), developed within extrastriate cortex (area V3A). This BOLD change progressed contiguously and slowly (3.5 ± 1.1 mm/min) over occipital cortex, congruent with the retinotopy of the visual percept. Following the same retinotopic progression, the BOLD signal then diminished (possibly reflecting vasoconstriction after the initial vasodilation), as did the BOLD response to visual activation. During periods with no visual stimulation, but while the subject was experiencing scintillations, BOLD signal followed the retinotopic progression of the visual percept. These data strongly suggest that an electrophysiological event such as CSD generates the aura in human visual cortex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was designed to identify the neural networks underlying automatic auditory deviance detection in 10 healthy subjects using functional magnetic resonance imaging. We measured blood oxygenation level-dependent contrasts derived from the comparison of blocks of stimuli presented as a series of standard tones (50 ms duration) alone versus blocks that contained rare duration-deviant tones (100 ms) that were interspersed among a series of frequent standard tones while subjects were watching a silent movie. Possible effects of scanner noise were assessed by a “no tone” condition. In line with previous positron emission tomography and EEG source modeling studies, we found temporal lobe and prefrontal cortical activation that was associated with auditory duration mismatch processing. Data were also analyzed employing an event-related hemodynamic response model, which confirmed activation in response to duration-deviant tones bilaterally in the superior temporal gyrus and prefrontally in the right inferior and middle frontal gyri. In line with previous electrophysiological reports, mismatch activation of these brain regions was significantly correlated with age. These findings suggest a close relationship of the event-related hemodynamic response pattern with the corresponding electrophysiological activity underlying the event-related “mismatch negativity” potential, a putative measure of auditory sensory memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speech has both auditory and visual components (heard speech sounds and seen articulatory gestures). During all perception, selective attention facilitates efficient information processing and enables concentration on high-priority stimuli. Auditory and visual sensory systems interact at multiple processing levels during speech perception and, further, the classical motor speech regions seem also to participate in speech perception. Auditory, visual, and motor-articulatory processes may thus work in parallel during speech perception, their use possibly depending on the information available and the individual characteristics of the observer. Because of their subtle speech perception difficulties possibly stemming from disturbances at elemental levels of sensory processing, dyslexic readers may rely more on motor-articulatory speech perception strategies than do fluent readers. This thesis aimed to investigate the neural mechanisms of speech perception and selective attention in fluent and dyslexic readers. We conducted four functional magnetic resonance imaging experiments, during which subjects perceived articulatory gestures, speech sounds, and other auditory and visual stimuli. Gradient echo-planar images depicting blood oxygenation level-dependent contrast were acquired during stimulus presentation to indirectly measure brain hemodynamic activation. Lip-reading activated the primary auditory cortex, and selective attention to visual speech gestures enhanced activity within the left secondary auditory cortex. Attention to non-speech sounds enhanced auditory cortex activity bilaterally; this effect showed modulation by sound presentation rate. A comparison between fluent and dyslexic readers' brain hemodynamic activity during audiovisual speech perception revealed stronger activation of predominantly motor speech areas in dyslexic readers during a contrast test that allowed exploration of the processing of phonetic features extracted from auditory and visual speech. The results show that visual speech perception modulates hemodynamic activity within auditory cortex areas once considered unimodal, and suggest that the left secondary auditory cortex specifically participates in extracting the linguistic content of seen articulatory gestures. They are strong evidence for the importance of attention as a modulator of auditory cortex function during both sound processing and visual speech perception, and point out the nature of attention as an interactive process (influenced by stimulus-driven effects). Further, they suggest heightened reliance on motor-articulatory and visual speech perception strategies among dyslexic readers, possibly compensating for their auditory speech perception difficulties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To explore, using functional magnetic resonance imaging (MRI), the functional organisation of phonological processing in young adults born very preterm.

Subjects: Six right handed male subjects with radiological evidence of thinning of the corpus callosum were selected from a cohort of very preterm subjects. Six normal right handed male volunteers acted as controls.

Method: Blood oxygenation level dependent contrast echoplanar images were acquired over five minutes at 1.5 T while subjects performed the tasks. During the ON condition, subjects were visually presented with pairs of non-words and asked to press a key when a pair of words rhymed (phonological processing). This task alternated with the OFF condition, which required subjects to make letter case judgments of visually presented pairs of consonant letter strings (orthographic processing). Generic brain activation maps were constructed from individual images by sinusoidal regression and non-parametric testing. Between group differences in the mean power of experimental response were identified on a voxel wise basis by analysis of variance.

Results: Compared with controls, the subjects with thinning of the corpus callosum showed significantly reduced power of response in the left hemisphere, including the peristriate cortex and the cerebellum, as well as in the right parietal association area. Significantly increased power of response was observed in the right precentral gyrus and the right supplementary motor area.

Conclusions: The data show evidence of increased frontal and decreased occipital activation in male subjects with neurodevelopmental thinning of the corpus callosum, which may be due to the operation of developmental compensatory mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study Objectives: Sleep bruxism (SB) is a repetitive jaw-muscle activity characterized by clenching or grinding of the teeth and/or by bracing or thrusting of the mandible occurring during sleep. SB is scored, from electromyographic traces, as rhythmic masticatory muscle activity (RMMA). Most RMMA occurred during sleep in association with sleep arousal. Since not all RMMA episodes were associated with sleep arousal we hypothesized that some event could be observed in relation to small fluctuations of the oxygen level resulting in mild desaturation/hypoxia. Methods: Sleep laboratory or home recordings from 22 SB (teeth grinding) patients were analyzed from our data bank. A total of 143 RMMA/SB episodes were classified in 4 categories: (i) no arousal & no body movement; (ii) arousal + & no body movement; (iii) no arousal & body movement +; (iv) arousal + & body movement +. Minimum blood oxygen levels were assessed from finger oxymetry signal: 1) during the baseline period before RMMA, i.e., an average of 7 s before RMMA onset (-20 s to -14 s); 2) during RMMA, i.e. a window of 15 s corresponding to -5 s before the onset until +10 s after the episode. For all episodes, the minimum oximetry values were compared for each patient. Results: There was a significant variation of blood oxygen level over time (p=0.001) with a statistically significant transient hypoxia during RMMA at time (+7),(+8) and (+9) s. The variation over time was similar among the 4 groups (non significant group*time interaction p=0.10) and no overall difference was observed between groups (p=0.91). Of the 22 subjects, 6 subjects (27%) remained equal or had a slight increase in SaO2 (+8) s after the RMMA/SB onset compared to baseline (-20 s to -14) s, 10 subjects (45%) showed a small decrease in SaO2 (>0 to <1%) and 6 others (27%) had a decrease of 1-1.8%. Conclusions: These preliminary findings suggest that in some SB patients, RMMA episodes are potentially triggered by minor transient hypoxia. Key words: sleep bruxism, oximetry, desaturation, hypoxia, rhythmic masticatory muscle activity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the premise that individual differences in autonomic physiology could be used to specify the nature and consequences of information processing taking place in medial prefrontal regions during cognitive reappraisal of unpleasant pictures. Neural (blood oxygenation level-dependent functional magnetic resonance imaging) and autonomic (electrodermal [EDA], pupil diameter, cardiac acceleration) signals were recorded simultaneously as twenty-six older people (ages 64–66 years) used reappraisal to increase, maintain, or decrease their responses to unpleasant pictures. EDA was higher when increasing and lower when decreasing compared to maintaining. This suggested modulation of emotional arousal by reappraisal. By contrast, pupil diameter and cardiac acceleration were higher when increasing and decreasing compared to maintaining. This suggested modulation of cognitive demand. Importantly, reappraisal-related activation (increase, decrease > maintain) in two medial prefrontal regions (dorsal medial frontal gyrus and dorsal cingulate gyrus) was correlated with greater cardiac acceleration (increase, decrease > maintain) and monotonic changes in EDA (increase > maintain > decrease). These data indicate that these two medial prefrontal regions are involved in the allocation of cognitive resources to regulate unpleasant emotion, and that they modulate emotional arousal in accordance with the regulatory goal. The emotional arousal effects were mediated by the right amygdala. Reappraisal-related activation in a third medial prefrontal region (subgenual anterior cingulate cortex) was not associated with similar patterns of change in any of the autonomic measures, thus highlighting regional specificity in the degree to which cognitive demand is reflected in medial prefrontal activation during reappraisal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We frequently encounter conflicting emotion cues. This study examined how the neural response to emotional prosody differed in the presence of congruent and incongruent lexico-semantic cues. Two hypotheses were assessed: (i) decoding emotional prosody with conflicting lexico-semantic cues would activate brain regions associated with cognitive conflict (anterior cingulate and dorsolateral prefrontal cortex) or (ii) the increased attentional load of incongruent cues would modulate the activity of regions that decode emotional prosody (right lateral temporal cortex). While the participants indicated the emotion conveyed by prosody, functional magnetic resonance imaging data were acquired on a 3T scanner using blood oxygenation level-dependent contrast. Using SPM5, the response to congruent cues was contrasted with that to emotional prosody alone, as was the response to incongruent lexico-semantic cues (for the 'cognitive conflict' hypothesis). The right lateral temporal lobe region of interest analyses examined modulation of activity in this brain region between these two contrasts (for the 'prosody cortex' hypothesis). Dorsolateral prefrontal and anterior cingulate cortex activity was not observed, and neither was attentional modulation of activity in right lateral temporal cortex activity. However, decoding emotional prosody with incongruent lexico-semantic cues was strongly associated with left inferior frontal gyrus activity. This specialist form of conflict is therefore not processed by the brain using the same neural resources as non-affective cognitive conflict and neither can it be handled by associated sensory cortex alone. The recruitment of inferior frontal cortex may indicate increased semantic processing demands but other contributory functions of this region should be explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: Animal studies indicate that dopamine pathways in the ventral striatum code for the motivational salience of both rewarding and aversive stimuli, but evidence for this mechanism in humans is less established. We have developed a functional magnetic resonance imaging (fMRI) model which permits examination of the neural processing of both rewarding and aversive stimuli. Objectives: The aim of the study was to determine the effect of the dopamine receptor antagonist, sulpiride, on the neural processing of rewarding and aversive stimuli in healthy volunteers. Methods: We studied 30 healthy participants who were randomly allocated to receive a single dose of sulpiride (400 mg) or placebo, in a double-blind, parallel-group design. We used fMRI to measure the neural response to rewarding (taste or sight of chocolate) and aversive stimuli (sight of mouldy strawberries or unpleasant strawberry taste) 4 h after drug treatment. Results: Relative to placebo, sulpiride reduced blood oxygenation level-dependent responses to chocolate stimuli in the striatum (ventral striatum) and anterior cingulate cortex. Sulpiride also reduced lateral orbitofrontal cortex and insula activations to the taste and sight of the aversive condition. Conclusions: These results suggest that acute dopamine receptor blockade modulates mesolimbic and mesocortical neural activations in response to both rewarding and aversive stimuli in healthy volunteers. This effect may be relevant to the effects of dopamine receptor antagonists in the treatment of psychosis and may also have implications for the possible antidepressant properties of sulpiride.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine the neural circuitry involved in food craving, in making food particularly appetitive and thus in driving wanting and eating, we used fMRI to measure the response to the flavour of chocolate, the sight of chocolate and their combination in cravers vs. non-cravers. Statistical parametric mapping (SPM) analyses showed that the sight of chocolate produced more activation in chocolate cravers than non-cravers in the medial orbitofrontal cortex and ventral striatum. For cravers vs. non-cravers, a combination of a picture of chocolate with chocolate in the mouth produced a greater effect than the sum of the components (i.e. supralinearity) in the medial orbitofrontal cortex and pregenual cingulate cortex. Furthermore, the pleasantness ratings of the chocolate and chocolate-related stimuli had higher positive correlations with the fMRI blood oxygenation level-dependent signals in the pregenual cingulate cortex and medial orbitofrontal cortex in the cravers than in the non-cravers. To our knowledge, this is the first study to show that there are differences between cravers and non-cravers in their responses to the sensory components of a craved food in the orbitofrontal cortex, ventral striatum and pregenual cingulate cortex, and that in some of these regions the differences are related to the subjective pleasantness of the craved foods. Understanding individual differences in brain responses to very pleasant foods helps in the understanding of the mechanisms that drive the liking for specific foods and thus intake of those foods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autism has been associated with enhanced local processing on visual tasks. Originally, this was based on findings that individuals with autism exhibited peak performance on the block design test (BDT) from the Wechsler Intelligence Scales. In autism, the neurofunctional correlates of local bias on this test have not yet been established, although there is evidence of alterations in the early visual cortex. Functional MRI was used to analyze hemodynamic responses in the striate and extrastriate visual cortex during BDT performance and a color counting control task in subjects with autism compared to healthy controls. In autism, BDT processing was accompanied by low blood oxygenation level-dependent signal changes in the right ventral quadrant of V2. Findings indicate that, in autism, locally oriented processing of the BDT is associated with altered responses of angle and grating-selective neurons, that contribute to shape representation, figure-ground, and gestalt organization. The findings favor a low-level explanation of BDT performance in autism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural and functional connectivity are intrinsic properties of the human brain and represent the amount of cognitive capacities of individual subjects. These connections are modulated due to development, learning, and disease. Momentary adaptations in functional connectivity alter the structural connections, which in turn affect the functional connectivity. Thus, structural and functional connectivity interact on a broad timescale. In this study, we aimed to explore distinct measures of connectivity assessed by functional magnetic resonance imaging and diffusion tensor imaging and their association to the dominant electroencephalogram oscillatory property at rest: the individual alpha frequency (IAF). We found that in 21 healthy young subjects, small intraindividual temporal IAF fluctuations were correlated to increased blood oxygenation level-dependent signal in brain areas associated to working memory functions and to the modulation of attention. These areas colocalized with functionally connected networks supporting the respective functions. Furthermore, subjects with higher IAF show increased fractional anisotropy values in fascicles connecting the above-mentioned areas and networks. Hence, due to a multimodal approach a consistent functionally and structurally connected network related to IAF was observed.