419 resultados para BITTER MELON
Resumo:
En este trabajo se realiza una sucinta recopilación de los últimos avances en la investigación aplicada al control del bitter pit en la Estación Experimental de Aula Dei (EEAD-CSIC). Se describen nuevas formulaciones y estrategias de aplicación foliar con calcio, un método físico postcosecha y el método de tinción selectiva de calcio en fruto
Resumo:
Nitrogen (N) is an important nutrient for melon (Cucumis melo L.) production. However there is scanty information about the amount necessary to maintain an appropriate balance between growth and yield. Melon vegetative organs must develop sufficiently to intercept light and accumulate water and nutrients but it is also important to obtain a large reproductive-vegetative dry weight ratio to maximize the fruit yield. We evaluated the influence of different N amounts on the growth, production of dry matter and fruit yield of a melon ‘Piel de sapo’ type. A three-year field experiment was carried out from May to September. Melons were subjected to an irrigation depth of 100% crop evapotranspiration and to 11 N fertilization rates, ranging 11 to 393 kg ha –1 in the three years. The dry matter production of leaves and stems increased as the N amount increased. The dry matter of the whole plant was affected similarly, while the fruit dry matter decreased as the N amount was increased above 112, 93 and 95 kg ha –1 , in 2005, 2006 and 2007, respectively. The maximum Leaf Area Index (LAI), 3.1, was obtained at 393 kg ha –1 of N. The lowest N supply reduced the fruit yield by 21%, while the highest increased the vegetative growth, LAI and Leaf Area Duration (LAD), but reduced yield by 24% relative to the N93 treatment. Excessive applications of N increase vegetative growth at the expense of reproductive growth. For this melon type, rates about 90-100 kg ha –1 of N are sufficient for adequate plant growth, development and maximum production. To obtain fruit yield close to the maximum, the leaf N concentration at the end of the crop cycle should be higher than 19.5 g kg –1
Resumo:
In order to establish a rational nitrogen (N) fertilisation and reduce groundwater contamination, a clearer understanding of the N distribution through the growing season and its dynamics inside the plant is crucial. In two successive years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to determine the uptake of N fertiliser, applied by means of fertigation at different stages of plant growth, and to follow the translocation of N in the plant using 15N-labelled N. In 2006, two experiments were carried out. In the first experiment, labelled 15N fertiliser was supplied at the female-bloom stage and in the second, at the end of fruit ripening. Labelled 15N fertiliser was made from 15NH415NO3 (10 at.% 15N) and 9.6 kg N ha−1 were applied in each experiment over 6 days (1.6 kg N ha−1 d−1). In 2007, the 15N treatment consisted of applying 20.4 kg N ha−1 as 15NH415NO3 (10 at.% 15N) in the middle of fruit growth, over 6 days (3.4 kg N ha−1 d−1). In addition, 93 and 95 kg N ha−1 were supplied daily by fertigation as ammonium nitrate in 2006 and 2007, respectively. The results obtained in 2006 suggest that the uptake of N derived from labelled fertiliser by the above-ground parts of the plants was not affected by the time of fertiliser application. At the female-flowering and fruit-ripening stages, the N content derived from 15N-labelled fertiliser was close to 0.435 g m−2 (about 45% of the N applied), while in the middle of fruit growth it was 1.45 g m−2 (71% of the N applied). The N application time affected the amount of N derived from labelled fertiliser that was translocated to the fruits. When the N was supplied later, the N translocation was lower, ranging between 54% at female flowering and 32% at the end of fruit ripening. Approximately 85% of the N translocated came from the leaf when the N was applied at female flowering or in the middle of fruit growth. This value decreased to 72% when the 15N application was at the end of fruit ripening. The ammonium nitrate became available to the plant between 2 and 2.5 weeks after its application. Although the leaf N uptake varied during the crop cycle, the N absorption rate in the whole plant was linear, suggesting that the melon crop could be fertilised with constant daily N amounts until 2–3 weeks before the last harvest.
Resumo:
Fifty-nine rhizospheric soil samples from twenty different melon farms of Guatemala and Honduras were analysed to study the Fusarium species present in the soil and those developing on roots surfaces.
Resumo:
The need to reduce nitrogen (N) fertilizer pollution strengthens the importance of improving the utilization efficiency of applied N to crops. This requires knowledge of crop N uptake characteristics and how fertilization management affects it. A three-year field experiment was conducted from May to September in central Spain to investigate the influence of different N rates, which ranged from 11 to 393 kg ha-1, applied through drip irrigation, on the dynamics of N uptake, nitrogen use efficiency (NUE), fruit yield and quality of a ?Piel de sapo? melon crop (Cucumis melo L. cv. Sancho). Both N concentration and N content increased in different plant parts with the N rate. Leaves had the highest N concentration, which declined by 40-50% from 34-41 days after transplanting (DAT), while the highest N uptake rate was observed from 30-35 to 70-80 DAT, coinciding with fruit development. In each year, NUE declined with increasing N rate. With N fertilizer applications close to the optimum N rate of 90-100 kg ha-1, the fruits removed approximately 60 kg N ha-1, and the amount of N in the crop residue was about 80 kg N ha-1; this serves to replenish the organic nutrient pool in the soil and may be used by subsequent crops following mineralization.
Resumo:
Agronomic management in Ciudad Real, a province in central Spain, is characteristic of semi-arid cropped areas whose water supplies have high nitrate (NO3?) content due to environmental degradation. This situation is aggravated by the existence of a restrictive subsurface layer of ?caliche? or hardpan at a depth of 0.60 m. Under these circumstances, fertirrigation rates, including nitrogen (N) fertilizer schedules, must be carefully calibrated to optimize melon yields while minimizing the N pollution and water supply. Such optimization was sought by fertilizing with different doses of N and irrigating at 100% of the ETc (crop evapotranspiration), adjusted for this crop and area. The N content in the four fertilizer doses used was: 0, 55, 82 and 109 kg N ha?1. Due to the NO3? content in the irrigation water, however, the actual N content was 30 kg ha?1 higher in all four treatments repeated in two different years. The results showed correlation between melon plant N uptake and drainage (Dr), which in turn affects the amount of N leached, as well as correlation between Dr and LAI (leaf area index) for each treatment. A fertilizer factor (?) was estimated through two methods, from difference in Dr and in LAI ratio with respect to the maximum N dose, to correct ETc based on N doses. The difference was found in the adjusted evapotranspiration in both years using the corresponding ? achieved 42?49 mm at vegetative period, depending on the method, and it was not significant at senescent period. Finally, a growth curve between N uptake and plant dry weight (DW) for each treatment was defined to confirm that the observed higher plant vigour, showing higher LAI and reduced Dr, was due mainly to higher N doses.
Resumo:
The application of Rheology to study biological systems is a new and very extensive matter, in which melon is absolutely unknown. The goal of this work is to determine some physical characteristics of this fruit, immediately after harvest and during its conservation in cold storage. Portugal and Spain are the most interested countries in these studies, as they are important producers of melon. The varieties Branco da Leziria and Piel de sapo were chosen because they are the most popular in both countries. The fruit were studied on the day they were harvested, and then were conserved in cold storage in the "Instituto del Frio" in Madrid, and they were periodically tested again. Thus during seven days the same fruits, and new fruits, were picked up and tested. On the first day of testing we had 20 fruits to study and at the end of the testing period we had used 80 fruits. The results from the non-destructive impact test were very significant and they may contribute to standardise methods to measure fruit maturity. These results were confirmed by those obtained from compression tests. The results obtained during the Impact tests with melon were similar to those obtained previously with other fruits. There is a close relationship between the results of the Impact tests and Compression tests. Tests like Impact and Compression can be adapted to melon, varieties 'Piel de Sapo" and 'Branco de Leziria', allowing us to continue further work with this species. The great number of data obtained during performance of the tests allowed us to go on with this work and to contribute to standardise methods of measurement and expression of characteristics of a new biological product. During the "Impact damage in fruits and vegetables" workshop, held in Zaragoza in 1990, these matters were included in the priority list.