989 resultados para BIOSPHERE-ATMOSPHERE INTERACTIONS
Resumo:
Variations in deposition of terrigenous fine sediments and their grain-size distributions from a high-resolution marine sediment record offshore northwest Africa (30°51.0'N; 10°16.1'W) document climate changes on the African continent during the Holocene. End-member grain-size distributions of the terrigenous silt fraction, which are related to fluvial and aeolian dust transport, indicate millennial-scale variability in the dominant transport processes at the investigation site off northwest Africa as well as recurring periods of dry conditions in northwest Africa during the Holocene. The terrigenous record from the subtropical North Atlantic reflects generally humid conditions before the Younger Dryas, during the early to mid-Holocene, as well as after 1.3 kyr BP. By contrast, continental runoff was reduced and arid conditions were prevalent at the beginning of the Younger Dryas and during the mid- and late Holocene. A comparison with high- and low-latitude Holocene climate records reveals a strong link between northwest African climate and Northern Hemisphere atmospheric circulation throughout the Holocene. Due to its proximal position, close to an ephemeral river system draining the Atlas Mountains as well as the adjacent Saharan desert, this detailed marine sediment record, which has a temporal resolution between 15 and 120 years, is ideally suited to enhance our understanding of ocean-continent-atmosphere interactions in African climates and the hydrological cycle of northern Africa after the last deglaciation.
Resumo:
Proxy reconstructions of tropical Atlantic sea surface temperature (SST) that extend beyond the period of instrumental observations have primarily focused on centennial to millennial variability rather than on seasonal to multidecadal variability. Here we present monthly-resolved records of Sr/Ca (a proxy of SST) from fossil annually-banded Diploria strigosa corals from Bonaire (southern Caribbean Sea). The individual corals provide time-windows of up to 68 years length, and the total number of 295 years of record allows for assessing the natural range of seasonal to multidecadal SST variability in the western tropical Atlantic during snapshots of the mid- to late Holocene. Comparable to modern climate, the coral Sr/Ca records reveal that mid- to late Holocene SST was characterised by clear seasonal cycles, persistent quasi-biennial and prominent interannual as well as inter- to multidecadal-scale variability. However, the magnitude of SST variations on these timescales has varied over the last 6.2 ka. The coral records show increased seasonality during the mid-Holocene consistent with climate model simulations indicating that southern Caribbean SST seasonality is induced by insolation changes on orbital timescales, whereas internal dynamics of the climate system play an important role on shorter timescales. Interannual SST variability is linked to ocean-atmosphere interactions of Atlantic and Pacific origin. Pronounced interannual variability in the western tropical Atlantic is indicated by a 2.35 ka coral, possibly related to a strengthening of the variability of the El Niño/Southern Oscillation throughout the Holocene. Prominent inter- to multidecadal SST variability is evident in the coral records and slightly more pronounced in the mid-Holocene. We finally argue that our coral data provide a target for studying Holocene climate variability on seasonal and interannual to multidecadal timescales, when using further numerical models and high-resolution proxy data.
Resumo:
Alkenone sea surface temperature (SST) records were generated from the Ocean Drilling Program's (ODP) Sites 1014 and 1016 to examine the response of the California Current System to global climate change during the last 136 ka. The temperature differences between these sites (Delta SST(NEP)=SST(ODP1014)-SST(ODP1016)) reflected the intensity of the California Current and varied between 0.4 and 6.1 °C. A high Delta SST(NEP) (weaker California Current) was found for late marine isotope stage (MIS) 2 and early MIS 5e, while a low Delta SST(NEP) (stronger California Current) was detected for mid-MIS 5e and MIS 1. Spectral analysis indicated that this variation pattern dominated 23- (precession) and 30-ka periods. Comparison of the Delta SST(NEP) and SST based on data from core MD01-2421 at the Japan margin revealed anti-phase variation; the high Delta SST(NEP) (weakening of the California Current) corresponded to the low SST at the Japan margin (the southward displacement of the NW Pacific subarctic boundary), and vice versa. This variation was synchronous with a model prediction of the tropical El Niño-Southern Oscillation behavior. These findings suggest that the intensity of the North Pacific High varied in response to precessional forcing, and also that the response has been linked with the changes of tropical ocean-atmosphere interactions.