992 resultados para BIOLOGICAL ACCUMULATION
Resumo:
We report experimental results of near-surface winter temperatures along and adjacent to the channel bed of a High Arctic river on Melville Island, Canada. Temperature loggers 5cm below the ground surface in areas where the terrain suggests varying snow accumulation patterns revealed that the maximum winter difference between air and near-surface temperatures ranged from 0 to +30°C during the winter of 2012–13, and that shallow near-surface freezing conditions were delayed for up to 21 days in some locations. Cooling to -10°C was delayed for up to 117 days. Modelled temperature at the top of permafrost indicates that permafrost at locations with thick snow can be up to 8°C warmer than those with thin snow. This thermal evidence for an ameliorated surface environment indicates the potential for substantial extended microbial and biogeochemical cycling during early winter. Rapid thaw of the bed during initiation of snowmelt in spring also indicates a high degree of hydrological connectivity. Therefore, snow-filled channels may contribute to biogeochemical and aquatic cycling in High Arctic rivers.
Resumo:
Tese de doutoramento, Biologia (Biologia Marinha e Aquacultura), Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
Introduction The strong expansion of the world production of plastics caused a severe accumulation of plastic debris in the environment, which makes them one of the most important contaminants, growing as a global environmental problem. Although the production in Europe has been relatively constant in the last 10 years, world plastic production continues to increase, affecting soil biota and their functions. Objectives Thus, in order to evaluate the effects of MP in soil-dwelling organisms, earthworms (Eisenia andrei Bouché), were exposed to standard artificial soil mixed with MPs and the authors documented, using microscopic figures, the pathological lesions found in this biological model. Material and Methods Eight adult earthworms extracted from soils contaminated with different concentrations of MP (mg/kgdw) with sizes ranging between 250-1000 m, were fixed in 10% neutral-buffered formalin and processed for routine histopathological diagnosis. Results and discussion Contrary to what would be expected, MP were not found throughout the GI tube of earthworms but several lesions were found in the individuals extracted from the soils with high MP concentrations, when compared with control group, namely epithelial intestinal atrophy and evidences of inflammatory responses to this stress agent. Conclusion Earthworms have probably avoided the consumption of the biggest MPs. However, evidences point for lesions that were likely caused by the smallest MPs that were likely egested during the depuration phase.
Resumo:
The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3) d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L-1. Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosonlonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Species accumulation curves (SACs) chart the increase in recovery of new species as a function of some measure of sampling effort. Studies of parasite diversity can benefit from the application of SACs, both as empirical tools to guide sampling efforts and predict richness, and because their properties are informative about community patterns and the structure of parasite diversity. SACs can be used to infer interactivity in parasite infra-communities, to partition species richness into contributions from different spatial scales and different levels of the host hierarchy (individuals, populations and communities) or to identify modes of community assembly (niche versus dispersal). A historical tendency to treat individual hosts as statistically equivalent replicates (quadrats) seemingly satisfies the sample-based subgroup of SACs but care is required in this because of the inequality of hosts as sampling units. Knowledge of the true distribution of parasite richness over multiple host-derived and spatial scales is far from complete but SACs can improve the understanding of diversity patterns in parasite assemblages.
Resumo:
We show that the mutant Huntington's disease (HD) protein (mhtt) specifically inhibits endocytosis in primary striatal neurons. Unexpectedly, mhtt does not inhibit clathrin-dependent endocytosis as was anticipated based on known interacting partners. Instead, inhibition occurs through a non-clathrin, caveolar-related pathway. Expression of mhtt inhibited internalization of BODIPY-lactosylceramide (LacCer), which is internalized by a caveolar-related mechanism. In contrast, endocytosis of Alexa Fluor 594-transferrin (Tfn) and epidermal growth factor, internalized through clathrin pathway, was unaffected by mhtt expression. Caveolin-1 (cav1), the major structural protein of caveolae binds cholesterol and is responsible for its trafficking inside cells. Mhtt interacts with cav-1 and caused a striking accumulation of intracellular cholesterol. Cholesterol accumulated in cultured neurons expressing mhtt in vitro and in brains of mhtt-expressing animals in vivo, and was observed after induction of mhtt expression in PC-12 cell lines. The accumulation occurred only when mhtt and cav1 were simultaneously expressed in cells. Knockdown of cav1 in mhtt-expressing neurons blocked cholesterol accumulation and restored LacCer endocytosis. Thus, mhtt and cav1 functionally interact to cause both cellular defects. These data provide the first direct link between mhtt and caveolar-related endocytosis and also suggest a possible mechanism for HD neurotoxicity where cholesterol homeostasis is perturbed.
Resumo:
The cholinergic amacrine cells in the rabbit retina slowly accumulate glycine to very high levels when the tissue is incubated with excess sarcosine (methylglycine), even though these cells do not normally contain elevated levels of glycine and do not express high-affinity glycine transporters. Because the sarcosine also depletes the endogenous glycine in the glycine-containing amacrine cells and bipolar cells, the cholinergic amacrine cells can be selectively labeled by glycine immunocytochemistry under these conditions. Incubation experiments indicated that the effect of sarcosine on the cholinergic amacrine cells is indirect: sarcosine raises the extracellular concentration of glycine by blocking its re-uptake by the glycinergic amacrine cells, and the excess glycine is probably taken-up by an unidentified low-affinity transporter on the cholinergic amacrine cells. Neurobiotin injection of the On-Off direction-selective (DS) ganglion cells in sarcosine-incubated rabbit retina was combined with glycine immunocytochemistry to examine the dendritic relationships between the DS ganglion cells and the cholinergic amacrine cells. These double-labeled preparations showed that the dendrites of the DS ganglion cells closely follow the fasciculated dendrites of the cholinergic amacrine cells. Each ganglion cell dendrite located within the cholinergic strata is associated with a cholinergic fascicle and, conversely, there are few cholinergic fascicles that do not contain at least one dendrite from an On-Off DS cell. It is not known how the dendritic co-fasciculation develops, but the cholinergic dendritic plexus may provide the initial scaffold, because the dendrites of the On-Off DS cells commonly run along the outside of the cholinergic fascicles. J. Comp. Neurol. 421:1-13, 2000. (C) 2000 Wiley-Liss, Inc.
Resumo:
1 Adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) have structural similarities, interact with each others receptors (calcitonin receptor-like receptor (CLR)/receptor-activity-modifying proteins (RAMPs)) and show overlapping biological activities. AM and CGRP receptors are chiefly coupled to cAMP production. In this study, a method of primary dissociated cell culture was used to investigate the presence of AM and CGRP receptors and their effects on cAMP production in embryonic spinal cord cells. 2 Both neuronal and non-neuronal CLR immunopositive cells were present in our model. 3 High affinity, specific [ 125I]-AM binding sites (K(d) 79±9 pM and B(max) 571±34 fmol mg -1 protein) were more abundant than specific [ 125I]-CGRP binding sites (K(d) 12±0.7 pM and B(max) 32±2 fmol mg -1 protein) in embryonic spinal cord cells. 4 Specific [ 125I]-AM binding was competed by related molecules with a ligand selectivity profile of rAM>hAM(22-52)>rCGRPα>CGRP(8-37) ≫[r-(r*,s*)]-N-[2-[[5-amino-1-[[4-(4-pyridinyl)-1-piperazinyl] carbonyl]pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1, 4-dihydro-2-oxo-3(2H)-quinazolinyl)-,1-piperidinecarboxamide (BIBN4096BS). 5 Specific [ 125I]-CGRP binding was competed by rCGRPα>rAM≥ CGRP(8-37)≥BIBN4096BS>hAM(22-52). 6 Cellular levels of cAMP were increased by AM (pEC"5"0 10.2±0.2) and less potently by rCGRPα (pEC"5"0 8.9±0.4). rCGRPα-induced cAMP accumulation was effectively inhibited by CGRP(8-37) (pA"2 7.63±0.44) and hAM(22-52) (pA"2 6.18±0.21) while AM-stimulation of cAMP levels was inhibited by CGRP(8-37) (pA"2 7.41±0.15) and AM(22-52) (pA"2 7.26±0.18). BIBN4096BS only antagonized the effects of CGRP (pA"2 8.40±0.30) on cAMP accumulation. 7 These pharmacological profiles suggest that effects of CGRP are mediated by the CGRP"1 (CLR/RAMP1) receptor in our model while those of AM are related to the activation of the AM"1 (CLR/RAMP2) receptor subtype. © 2006 Nature Publishing Group All rights reserved.
Resumo:
Diabetic nephropathy affects 30-40% of diabetics leading to end-stage kidney failure through progressive scarring and fibrosis. Previous evidence suggests that tissue transglutaminase (tTg) and its protein cross-link product epsilon(gamma-glutamyl)lysine contribute to the expanding renal tubulointerstitial and glomerular basement membranes in this disease. Using an in vitro cell culture model of renal proximal tubular epithelial cells we determined the link between elevated glucose levels with changes in expression and activity of tTg and then, by using a highly specific site directed inhibitor of tTg (1,3-dimethyl-2[(oxopropyl)thio]imidazolium), determined the contribution of tTg to glucose-induced matrix accumulation. Exposure of cells to 36 mm glucose over 96 h caused an mRNA-dependent increase in tTg activity with a 25% increase in extracellular matrix (ECM)-associated tTg and a 150% increase in ECM epsilon(gamma-glutamyl)lysine cross-linking. This was paralleled by an elevation in total deposited ECM resulting from higher levels of deposited collagen and fibronectin. These were associated with raised mRNA for collagens III, IV, and fibronectin. The specific site-directed inhibitor of tTg normalized both tTg activity and ECM-associated epsilon(gamma-glutamyl)lysine. Levels of ECM per cell returned to near control levels with non-transcriptional reductions in deposited collagen and fibronectin. No changes in transforming growth factor beta1 (expression or biological activity) occurred that could account for our observations, whereas incubation of tTg with collagen III indicated that cross-linking could directly increase the rate of collagen fibril/gel formation. We conclude that Tg inhibition reduces glucose-induced deposition of ECM proteins independently of changes in ECM and transforming growth factor beta1 synthesis thus opening up its possible application in the treatment other fibrotic and scarring diseases where tTg has been implicated.
Resumo:
Eukaryotic initiation factor 2A (eIF2A) has been shown to direct binding of the initiator methionyl-tRNA (Met-tRNA(i)) to 40 S ribosomal subunits in a codon-dependent manner, in contrast to eIF2, which requires GTP but not the AUG codon to bind initiator tRNA to 40 S subunits. We show here that yeast eIF2A genetically interacts with initiation factor eIF4E, suggesting that both proteins function in the same pathway. The double eIF2A/eIF4E-ts mutant strain displays a severe slow growth phenotype, which correlated with the accumulation of 85% of the double mutant cells arrested at the G(2)/M border. These cells also exhibited a disorganized actin cytoskeleton and elevated actin levels, suggesting that eIF2A might be involved in controlling the expression of genes involved in morphogenic processes. Further insights into eIF2A function were gained from the studies of eIF2A distribution in ribosomal fractions obtained from either an eIF5BDelta (fun12Delta) strain or a eIF3b-ts (prt1-1) strain. It was found that the binding of eIF2A to 40 and 80 S ribosomes was not impaired in either strain. We also found that eIF2A functions as a suppressor of Ure2p internal ribosome entry site-mediated translation in yeast cells. The regulation of expression from the URE2 internal ribosome entry site appears to be through the levels of eIF2A protein, which has been found to be inherently unstable with a half-life of approximately 17 min. It was hypothesized that this instability allows for translational control through the level of eIF2A protein in yeast cells.
Resumo:
Transglutaminases (Tgases) are a widely distributed group of enzymes that catalyse the post-translational modification of proteins by the formation of isopeptide bonds. This occurs either through protein cross-linking via epsilon-(gamma-glutamyl)lysine bonds or through incorporation of primary amines at selected peptide-bound glutamine residues. The cross-linked products, often of high molecular mass, are highly resistant to mechanical challenge and proteolytic degradation, and their accumulation is found in a number of tissues and processes where such properties are important, including skin, hair, blood clotting and wound healing. However, deregulation of enzyme activity generally associated with major disruptions in cellular homoeostatic mechanisms has resulted in these enzymes contributing to a number of human diseases, including chronic neurodegeneration, neoplastic diseases, autoimmune diseases, diseases involving progressive tissue fibrosis and diseases related to the epidermis of the skin. In the present review we detail the structural and regulatory features important in mammalian Tgases, with particular focus on the ubiquitous type 2 tissue enzyme. Physiological roles and substrates are discussed with a view to increasing and understanding the pathogenesis of the diseases associated with transglutaminases. Moreover the ability of these enzymes to modify proteins and act as biological glues has not gone unnoticed by the commercial sector. As a consequence, we have included some of the present and future biotechnological applications of this increasingly important group of enzymes.
Resumo:
Sesquiterpene lactones (SLs) are plant-derived compounds that display anti-cancer effects. Some SLs derivatives have a marked killing effect on cancer cells and have therefore reached clinical trials. Little is known regarding the mechanism of action of SLs. We studied the responses of human cancer cells exposed to various concentrations of dehydroleucodine (DhL), a SL of the guaianolide group isolated and purified from Artemisia douglasiana (Besser), a medicinal herb that is commonly used in Argentina. We demonstrate for the first time that treatment of cancer cells with DhL, promotes the accumulation of DNA damage markers such as phosphorylation of ATM and focal organization of γH2AX and 53BP1. This accumulation triggers cell senescence or apoptosis depending on the concentration of the DhL delivered to cells. Transient DhL treatment also induces marked accumulation of senescent cells. Our findings help elucidate the mechanism whereby DhL triggers cell cycle arrest and cell death and provide a basis for further exploration of the effects of DhL in in vivo cancer treatment models.
Resumo:
Cancer remains one of the world’s most devastating diseases, with more than 10 million new cases every year. However, traditional treatments have proven insufficient for successful medical management of cancer due to the chemotherapeutics’ difficulty in achieving therapeutic concentrations at the target site, non-specific cytotoxicity to normal tissues, and limited systemic circulation lifetime. Although, a concerted effort has been placed in developing and successfully employing nanoparticle(NP)-based drug delivery vehicles successfully mitigate the physiochemical and pharmacological limitations of chemotherapeutics, work towards controlling the subcellular fate of the carrier, and ultimately its payload, has been limited. Because efficient therapeutic action requires drug delivery to specific organelles, the subcellular barrier remains critical obstacle to maximize the full potential of NP-based delivery vehicles. The aim of my dissertation work is to better understand how NP-delivery vehicles’ structural, chemical, and physical properties affect the internalization method and subcellular localization of the nanocarrier. In this work we explored how side-chain and backbone modifications affect the conjugated polymer nanoparticle (CPN) toxicity and subcellular localization. We discovered how subtle chemical modifications had profound consequences on the polymer’s accumulation inside the cell and cellular retention. We also examined how complexation of CPN with polysaccharides affects uptake efficiency and subcellular localization. This work also presents how changes to CPN backbone biodegradability can significantly affect the subcellular localization of the material. A series of triphenyl phosphonium-containing CPNs were synthesized and the effect of backbone modifications have on the cellular toxicity and intracellular fate of the material. A mitochondrial-specific polymer exhibiting time-dependent release is reported. Finally, we present a novel polymerization technique which allows for the controlled incorporation of electron-accepting benzothiadiazole units onto the polymer chain. This facilitates tuning CPN emission towards red emission. The work presented here, specifically, the effect that side-chain and structure, polysaccharide formulation and CPN degradability have on material’s uptake behavior, can help maximize the full potential of NP-based delivery vehicles for improved chemotherapeutic drug delivery.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Acknowledgements We thank B. Lahner, E. Yakubova and S. Rikiishi for ICP-MS analysis, N. Komiyama, Iowa State University Plant Transformation Facility and Prashant Hosmani for generation of transgenic rice, K. Wang for providing pTF101.1 vector and N. Verbruggen for providing pYES2 and pYEC2/CT-GFP vectors. We also thank Rice T-DNA Insertion Sequence Database center for providing the T-DNA insertion line and X. Wang, T. Zheng and Z. Li for accessing 3 K rice genome sequence, and Graeme Paton for helpful discussions on Cu bioavailability in water-logged soils. This research was supported by a Grant-in-Aid for Specially promoted Research (JSPS KAKENHI Grant Number 16H06296 to J.F.M), and the US National Science Foundation, Plant Genome Research Program (Grant #IOS 0701119 to D.E.S., M.L.G. and S.R.M.P.).