995 resultados para BINARY-ALLOYS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new and simple criterion with which to quantitatively predict the glass forming ability (GFA) of metallic alloys is proposed. It was found that the critical cooling rate for glass formation (R-C) correlates well with a proper combination of two factors, the minimum topological instability (lambda(min)) and the Delta h parameter, which depends on the average work function difference (Delta phi) and the average electron density difference (Delta n(ws)(1/3)) among the constituent elements of the alloy. A correlation coefficient (R-2) of 0.76 was found between R-c and the new criterion for 68 alloys in 30 different metallic systems. The new criterion and the Uhlmann's approach were used to estimate the critical amorphous thickness (Z(C)) of alloys in the Cu-Zr system. The new criterion underestimated R-C in the Cu-Zr system, producing predicted Z(C) values larger than those observed experimentally. However, when considering a scale factor, a remarkable similarity was observed between the predicted and the experimental behavior of the GFA in the binary Cu-Zr. When using the same scale factor and performing the calculation for the ternary Zr-Cu-Al, good agreement was found between the predicted and the actual best GFA region, as well as between the expected and the observed critical amorphous thickness. (C) 2012 American Institute of Physics. [doi:10.1063/1.3676196]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the many aluminum alloys which have been studied are the binary copper-aluminum alloys. These have proven to be among the most useful of the alumi­num alloys thus far worked upon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alloy system selected for study was the binary alloy of platinum and silver. An examination of the various silver alloy diagrams revealed that of several possible alloys, the silver platinum was the most suit­able with regard to solubility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of increasing levels of silicon on the microstructure and creep properties of high-pressure die-cast Mg-Al-Si (AS) alloys has been investigated. The morphology of the Mg2Si phase in die-cast AS alloys was found to be a function of the silicon content. The Mg2Si particles in castings with up to 1.14 wt pct Si have a Chinese script morphology. For AS21 alloys with silicon contents greater than 1.4 wt pet Si (greater than the alpha-Mg2Si binary eutectic point), some Mg2Si particles have a coarse blocky shape. Increasing the silicon content above the eutectic level results in an increase in the number of coarse faceted Mg2Si particles in the microstructure. Creep rates at 100 hours were found to decrease with increasing silicon content in AS-type alloys. The decrease in creep rate was most dramatic for silicon contents up to 1.1 wt pct. Further additions of silicon of up to 2.64 wt pct also resulted in significant decreases in creep rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iron is the most common and detrimental impurity in aluminum casting alloys and has long been associated with an increase in casting defects. While the negative effects of iron are clear, the mechanism involved is not fully understood. It is generally believed to be associated with the formation of Fe-rich intermetallic phases. Many factors, including alloy composition, melt superheating, Sr modification, cooling, rate, and oxide bifilms, could play a role. In the present investigation, the interactions between iron and each individual element commonly present in aluminum casting alloys, were investigated using a combination of thermal analysis and interrupted quenching tests. The Fe-rich intermetallic phases were characterized using optical microscope, scanning electron microscope, and electron probe microanalysis (EPMA), and the results were compared with the predictions by Thermocalc. It was found that increasing the iron content changes the precipitation sequence of the beta phase, leading to the precipitation of coarse binary beta platelets at a higher temperature. In contrast, manganese, silicon, and strontium appear to suppress the coarse binary beta platelets, and Mn further promotes the formation of a more compact and less harmful a phase. They are therefore expected to reduce the negative effects of the phase. While reported in the literature, no effect of P on the amount of beta platelets was observed. Finally, attempts are made to correlate the Fe-rich intermetallic phases to the formation of casting defects. The role of the beta phase as a nucleation site for eutectic Si and the role of the oxide bifilms and AIP as a heterogeneous substrate of Fe intermetallics are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following a scene-setting introduction are detailed reviews of the relevant scientific principles, thermal analysis as a research tool and the development of the zinc-aluminium family of alloys. A recently introduced simultaneous thermal analyser, the STA 1500, its use for differential thermal analysis (DTA) being central to the investigation, is described, together with the sources of support information, chemical analysis, scanning electron microscopy, ingot cooling curves and fluidity spiral castings. The compositions of alloys tested were from the binary zinc-aluminium system, the ternary zinc-aluminium-silicon system at 30%, 50% and 70% aluminium levels, binary and ternary alloys with additions of copper and magnesium to simulate commercial alloys and five widely used commercial alloys. Each alloy was shotted to provide the smaller, 100mg, representative sample required for DTA. The STA 1500 was characterised and calibrated with commercially pure zinc, and an experimental procedure established for the determination of DTA heating curves at 10°C per minute and cooling curves at 2°C per minute. Phase change temperatures were taken from DTA traces, most importantly, liquidus from a cooling curve and solidus from both heating and cooling curves. The accepted zinc-aluminium binary phase diagram was endorsed with the added detail that the eutectic is at 5.2% aluminium rather than 5.0%. The ternary eutectic trough was found to run through the points, 70% Al, 7.1% Si, 545°C; 50% Al, 3.9% Si, 520°C; 30% Al, 1.4% Si, 482°C. The dendrite arm spacing in samples after DTA increased with increasing aluminium content from 130m at 30% to 220m at 70%. The smallest dendrite arm spacing of 60m was in the 30% aluminium 2% silicon alloy. A 1kg ingot of the 10% aluminium binary alloy, insulated with Kaowool, solidified at the same 2°C per minute rate as the DTA samples. A similar sized sand casting was solidified at 3°C per minute and a chill casting at 27°C per minute. During metallographic examination the following features were observed: heavily cored phase which decomposed into ' and '' on cooling; needles of the intermetallic phase FeAl4; copper containing ternary eutectic and copper rich T phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, an Atomic Force Microscopy (AFM) roughness analysis was performed on non-commercial Nitinol alloys with Electropolished (EP) and Magneto-Electropolished (MEP) surface treatments and commercially available stents by measuring Root-Mean-Square (RMS) , Average Roughness (Ra), and Surface Area (SA) values at various dimensional areas on the alloy surfaces, ranging from (800 x 800 nm) to (115 x 115µm), and (800 x 800 nm) to (40 x 40 µm) on the commercial stents. Results showed that NiTi-Ta 10 wt% with an EP surface treatment yielded the highest overall roughness, while the NiTi-Cu 10 wt% alloy had the lowest roughness when analyzed over (115 x 115 µm). Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analysis revealed unique surface morphologies for surface treated alloys, as well as an aggregation of ternary elements Cr and Cu at grain boundaries in MEP and EP surface treated alloys, and non-surface treated alloys. Such surface micro-patterning on ternary Nitinol alloys could increase cellular adhesion and accelerate surface endothelialization of endovascular stents, thus reducing the likelihood of in-stent restenosis and provide insight into hemodynamic flow regimes and the corrosion behavior of an implantable device influenced from such surface micro-patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation Behaviour of microcrystalline (mc) and nanocrystalline (nc) Mg-5%Al alloys produced by hot extrusion of ball-milled powders were investigated using instrumented indentation tests. The hardness values of the mc and nc metals exhibited indentation size effect (ISE), with nc alloys showing weaker ISE. The highly localized dislocation activities resulted in a small activation volume, hence enhanced strain rate sensitivity. Relative higher strain rate sensitivity and the negative Hall-Petch Relationship suggested the increasingly important role of grain boundary mediated mechanisms when the grain size decreased to nanometer region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium alloys are attracting increasing research interests due to their low density, high specific strength and good mechineability and availability as compared to other structural materials. However, the deformation and failure mechanisms of nanocrystalline Mg alloys have not been well understood. In this work, the deformation behavior of nanocrystalline Mg-5% Al alloys was investigated using compression test, with a focus on the effects of grain size. The average grain size of the Mg-Al alloy was changed from 13 µm to 50 nm via mechanical milling. The results showed that grain size had a significant influence on the yield stress and ductility of the Mg alloys, and the materials exhibited increased strain rate sensitivity with decrease of grain size. The deformation mechanisms were also strongly dependent with the grain sizes.