401 resultados para BILAYERS
Resumo:
Small unilamellar vesicles formed from four cationic lipids in the absence and the presence of varying amounts of cholesterol were studied using fluorescence polarization and H-1-NMR techniques. The fluorescence polarization data clearly indicate that the packing order in the cationic lipid bilayers are affected by inclusion of cholesterol. importantly, this effect exists also with a cationic lipid that is devoid of any formal linkage region where the interaction of the lipid with cholesterol through hydrogen bonding is not feasible. The interactions of cholesterol with different types of cationic lipids in excess water have also been examined in multilamellar dispersions using proton magnetic resonance spectroscopy. In all the cases, the methylene proton linewidths in the NMR spectra respond to the addition of cholesterol to vesicles. Hydrophobic association of the lipid and cholesterol imposes restriction on the chain (CH2)(n) motions, leaving the terminal CH3 groups relatively mobile. On the basis of energy-minimized structural models, a rationale of the cholesterol-cationic lipid assembly has also been presented.
Resumo:
A quantum-spin-Hall (QSH) state was achieved experimentally, albeit at a low critical temperature because of the narrow band gap of the bulk material. Twodimensional topological insulators are critically important for realizing novel topological applications. Using density functional theory (DFT), we demonstrated that hydrogenated GaBi bilayers (HGaBi) form a stable topological insulator with a large nontrivial band gap of 0.320 eV, based on the state-of-the-art hybrid functional method, which is implementable for achieving QSH states at room temperature. The nontrivial topological property of the HGaBi lattice can also be confirmed from the appearance of gapless edge states in the nanoribbon structure. Our results provide a versatile platform for hosting nontrivial topological states usable for important nanoelectronic device applications.
Resumo:
Modern drug discovery gives rise to a great number of potential new therapeutic agents, but in some cases the efficient treatment of patient may not be achieved because the delivery of active compounds to the target site is insufficient. Thus, drug delivery is one of the major challenges in current pharmaceutical research. Numerous nanoparticle-based drug carriers, e.g. liposomes, have been developed for enhanced drug delivery and targeting. Drug targeting may enhance the efficiency of the treatment and, importantly, reduce unwanted side effects by decreasing drug distribution to non-target tissues. Liposomes are biocompatible lipid-based carriers that have been studied for drug delivery during the last 40 years. They can be functionalized with targeting ligands and sensing materials for triggered activation. In this study, various external signal-assisted liposomal delivery systems were developed. Signals can be used to modulate drug permeation or release from the liposome formulation, and they provide accurate control of time, place and rate of activation. The study involved three types of signals that were used to trigger drug permeation and release: electricity, heat and light. Electrical stimulus was utilized to enhance the permeation of liposomal DNA across the skin. Liposome/DNA complex-mediated transfections were performed in tight rat epidermal cell model. Various transfection media and current intensities were tested, and transfection efficiency was evaluated non-invasively by monitoring the concentration of secreted reporter protein in cell culture medium. Liposome/DNA complexes produced gene expression, but electrical stimulus did not enhance the transfection efficiency significantly. Heat-sensitive liposomal drug delivery system was developed by coating liposomes with biodegradable and thermosensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate polymer. Temperature-triggered liposome aggregation and contents release from liposomes were evaluated. The cloud point temperature (CP) of the polymer was set to 42 °C. Polymer-coated liposome aggregation and contents release were observed above CP of the polymer, while non-coated liposomes remained intact. Polymer precipitates above its CP and interacts with liposomal bilayers. It is likely that this induces permeabilization of the liposomal membrane and contents release. Light-sensitivity was introduced to liposomes by incorporation of small (< 5 nm) gold nanoparticles. Hydrophobic and hydrophilic gold nanoparticles were embedded in thermosensitive liposomes, and contents release was investigated upon UV light exposure. UV light-induced lipid phase transitions were examined with small angle X-ray scattering, and light-triggered contents release was shown also in human retinal pigment epithelial cell line. Gold nanoparticles absorb light energy and transfer it into heat, which induces phase transitions in liposomes and triggers the contents release. In conclusion, external signal-activated liposomes offer an advanced platform for numerous applications in drug delivery, particularly in the localized drug delivery. Drug release may be localized to the target site with triggering stimulus that results in better therapeutic response and less adverse effects. Triggering signal and mechanism of activation can be selected according to a specific application.
Resumo:
Magnetic resonance studies reveal a marked difference between the binding of α-tocopherol and that of the corresponding acetate (vitamin E acetate) with dipalmitoylphosphatidylcholine (DPPC) vesicles. This is reflected in differences in the phase-transition curves of the DPPC vesicles incorporated with the two compounds, as well as in the 13C relaxation times and line widths. A model for the incorporation of these molecules in lipid bilayers has been suggested. α-Tocopherol binds strongly with the lipids, possibly through a hydrogen bond formation between the hydroxyl group of the former and one of the oxygen atoms of the latter. The possibility of such a hydrogen bond formation is excluded in vitamin E acetate, which binds loosely through the normal hydrophobic interaction. The model for lipid-vitamin interaction explains the in vitro decomposition of H2O2 by α-tocopherol. α-Tocopherol in conjuction with H2O2 can also act as a free-radical scavenger in the lipid phase. The incorporation of α-tocopherol and vitamin E acetate in DPPC vesicles enhances the permeability of lipid bilayers for small molecules such as sodium ascorbate.
Resumo:
Molecular dynamics (MD) simulations are reported for an anchored bilayer formed by the intercalation of cetyl trimethyl ammonium (CTA) and CH3(CH2)15N+(CH3) ions in a layered solid, CdPS3. The intercalated CTA ions are organized with the cationic headgroups tethered to the inorganic sheet and the hydrocarbon tails arranged as bilayers. Simulations were performed at three temperatures, 65, 180, and 298 K, using an isothermal−isobaric ensemble that was subsequently switched once macroscopic parameters had converged to a canonical isothermal−isochoric ensemble. The simulations are able to reproduce the experimental features of this system, including the formation of the bilayer and layer-to-layer separation distance. An analysis of the conformation of the chains showed that at all three temperatures a fraction of the alkyl chains retained a planar all-trans conformation, and that gauche bonds occurred as part of a “kink” (gauche+−trans−gauche−) sequence and not as isolated gauche bonds. Trans−gauche isomerization rates for the alkyl chains in the anchored bilayer are slower than those in lipid bilayers at the same temperature and show a progressive increase as the torsion numbers approach the tail. A two-dimensional periodic Voronoi tessellation analysis was performed to obtain the single-molecular area of an alkyl chain in the bilayer. The single-molecular area relaxation times are an order of magnitude longer than the trans−gauche isomerization times. The results indicate that the trans−gauche isomerization is associated with the creation and annihilation of a kink defect sequence. The results of the present MD simulation explain the apparent conflicting estimates of the gauche disorder in this system as obtained from infrared and 13C nuclear magnetic resonance measurements.
Resumo:
The present study aims to elucidate the modifications in the structure and functionality of the phospholipid matrix of biological membranes brought about by free radical-mediated oxidative damage of its molecular constituents. To this end, the surface properties of two oxidatively modified phospholipids bearing an aldehyde or carboxyl function at the end of truncated sn-2 acyl chain were studied using a Langmuir balance. The results obtained reveal both oxidized species to have a significant impact on the structural dynamics of phospholipid monolayers, as illustrated by the progressive changes in force-area isotherms with increasing mole fraction of the oxidized lipid component. Moreover, surface potential measurements revealed considerable modifications in the electric properties of oxidized phospholipid containing monolayers during film compression, suggesting a packing state-controlled reorientation of the intramolecular electric dipoles of the lipid headgroups and acyl chains. Based on the above findings, a model describing the conformational state of oxidized phospholipid molecules in biological membranes is proposed, involving the protrusion of the acyl chains bearing the polar functional groups out from the hydrocarbon phase to the surrounding aqueous medium. Oxidative modifications alter profoundly the physicochemical properties of unsaturated phospholipids and are therefore readily anticipated to have important implications for their interactions with membrane-associating molecules. Along these lines, the carboxyl group bearing lipid was observed to bind avidly the peripheral membrane protein cytochrome c. The binding was reversed following increase in ionic strength or addition of polyanionic ATP, thus suggesting it to be driven by electrostatic interactions between cationic residues of the protein and the deprotonated lipid carboxyl exposed to the aqueous phase. The presence of aldehyde function bearing oxidized phospholipid was observed to enhance the intercalation of four antimicrobial peptides into phospholipid monolayers and liposomal bilayers. Partitioning of the peptides to monolayers was markedly attenuated by the aldehyde scavenger methoxyamine, revealing it to be mediated by the carbonyl moiety possibly through efficient hydrogen bonding or, alternatively, formation of covalent adduct in form of a Schiff base between the lipid aldehydes and primary amine groups of the peptide molecules. Lastly, both oxidized phospholipid species were observed to bind with high affinity three small membrane-partitioning therapeutic agents, viz. chlorpromazine, haloperidol, and doxorubicin. In conclusion, the results of studies conducted using biomimetic model systems support the notion that oxidative damage influences the molecular architecture as well as the bulk physicochemical properties of phospholipid membranes. Further, common polar functional groups carried by phospholipids subjected to oxidation were observed to act as molecular binding sites at the lipid-water interface. It is thus plausible that oxidized phospholipid species may elicit cellular level effects by modulating integration of various membrane-embedded and surface-associated proteins and peptides, whose conformational state, oligomerization, and functionality is known to be controlled by highly specific lipid-protein interactions and proper physical state of the membrane environment.
Resumo:
We report molecular dynamics simulations of bilayers using a united atom model with explicit solvent molecules. The bilayer consists of the single tail cationic surfactant behenyl trimethyl ammonium chloride (BTMAC) with stearyl alcohol (SA) as the cosurfactant. We study the gel to liquid crystalline transitions in the bilayer by varying the amount of water at fixed BTMAC to SA ratio as well as by varying the BTMAC to SA ratio at fixed water content. The bilayer is found to exist in the tilted, Lβ′ phase at low temperatures, and for the compositions investigated in this study, the Lβ′ to Lα melting transition occurred in the temperature range 330−338 K. For the highest BTMAC to SA composition (2:3 molar ratio), a diffuse headgroup−water interface is observed at lower temperatures, and an increase in the d-spacing occurs prior to the melting transition. This pretransition swelling is accompanied by a sharpening in the water density variation across the headgroup region of the bilayer. Signatures of this swelling effect which can be observed in the alkane density distributions, area per headgroup, and membrane thickness are attributed to the hydrophobic effect. At a fixed bilayer composition, the transition temperature (>338 K) from the Lβ′ to Lα transition obtained for the high water content bilayer (80 wt %) is similar to that obtained with low water content (54.3 wt %), confirming that the melting transition at these water contents is dominated by chain melting.
Resumo:
Fabrication of multilayer ultrathin composite films composed of nanosized titanium dioxide particles (P25, Degussa) and polyelectrolytes (PELs), such as poly(allyl amine hydrochloride) (PAH) and poly(styrene sulfonate sodium salt) (PSS), on glass substrates using the layer-by-layer (LbL) assembly technique and its potentia application for the photodegradation of rhodamine B under ultraviolet (UV) irradiation has been reported. The polyelectrolytes and TiO2 were deposited on glass substrates at pH 2.5 and the growth of the multilayers was studied using UV/vis speccrophotometer. Thicknes measurements of the films showed a linear increase in film thickness with increase in number of bilayers. The surface microstructure of the thin films was characterized by field emission scanning electron microscope. The ability of the catalysts immobilized by this technique was compared with TiO2 films prepared by drop casting and spin coating methods. Comparison has been made in terms of film stability and photodegradation of rhodamine B. Process variables such as the effect of surface area of the multilayers, umber of bilayers, and initial dye concentration on photodegradation of rhodamine B were studied. Degradation efficiency increased with increase in number of catalysts (total surface area) and bilayers. Kinetics analysis indicated that the photodegradation rates follow first order kinetics. Under maximum loading of TiO2, with five catalyst slides having 20 bilayers of polyelectrolyte/TiO2 on each, 100 mL of 10 mg/L dye solution could be degraded completely in 4 h. The same slides could be reused with the same efficiency for several cycles. This study demonstrates that nanoparticles can be used in wastewater treatment using a simple immobilization technique. This makes the process an attractive option for scale up.
Resumo:
The conformation, organization, and phase transitions of alkyl chains in organic-inorganic hybrids based on the double pervoskite-slab lead iodides, (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 (n = 11, 13, 15, 17) have been investigated by X-ray diffraction, calorimetry, and infrared vibrational spectroscopy. In these hybrid solids, double pervoskite (CH3NH3)Pb2I7 slabs are interleaved with alkyl ammonium chains with the anchored alkyl chains arranged as tilted bilayers and adopting a planar all-trans conformation at room temperature. The (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 compounds exhibit a single reversible phase transition above room temperature with the associated enthalpy change varying linearly with alkyl chain length. This transition corresponds to the melting in two-dimensions of the alkyl chains of the anchored bilayer and is characterized by increased conformational disorder of the methylene units of the chain and loss of tilt angle coherence leading to an increase in the interslab spacing. By monitoring features in the infrared spectra that are characteristic of the global conformation of the alkyl chains, a quantitative relation between conformational disorder and melting of the anchored bilayer is established. It is found that, irrespective of the alkyl chain length, melting occurs when at least 60% of the chains in the anchored bilayer of (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 have one or more gauche defects. This concentration is determined by the underlying lattice to which the alkyl chains are anchored.
Resumo:
Grafted polymers oil the surface of lipid membranes have potential applications in liposome-based drug delivery and Supported membrane systems. The effect of polymer grafting on the phase behavior of bilayers made up of single-tail lipids is investigated using dissipative particle dynamics. The bilayer is maintained in a tensionless state using a barostat. Simulations are carried Out by varying the grafting fraction, G(f), defined as the ratio of the number of polymer molecules to the number of lipid molecules, and the length of the lipid tails. At low G(f), the bilayer shows I sharp transition from the gel (L-beta) to the liquid-crystalline (L-alpha) phase. This main melting transition temperature is lowered as G(f) is increased, and above a critical value of G(f), the interdigitated L-beta I phase is observed prior to the main transition. The temperature range over which the intermediate phases are observed is a function of the lipid tail length and G(f). At higher grafting fractions, the presence of the L-beta I, phase is attributed to the increase in the area per head group due to the lateral pressure exerted by the polymer brush. The areal expansion and decrease in the melting temperatures as a function of G(f) were found to follow the scalings predicted by the self-consistent mean field theories for grafted polymer membranes. Our study shows that the grafted polymer density can be used to effectively control the temperature range and occurrence of a given bilayer phase.
Resumo:
The thermally driven Structural phase transition in the organic-inorganic hybrid perovskite (CnH2n+1NH3)(2)PbI4 has been investigated using molecular dynamics (MD) simulations. This system consists of positively charged alkyl-amine chains anchored to a rigid negatively charged PbI4 sheet with the chains organized as bilayers with a herringbone arrangement. Atomistic simulations were performed using ail isothermal-isobaric ensemble over a wide temperature range from 65 to 665 K for different alkyl chain lengths, n = 12, 14, 16, and 18. The simulations are able to reproduce the essential Features of the experimental observations of this system, including the existence of a transition, the linear variation of the transition temperature with alkyl chain length, and the expansion of the bilayer thickness at the transition. By use of the distance fluctuation Criteria, it is Shown that the transition is associated With a Melting of the alkyl chains of the anchored bilayer. Ail analysis of the conformation of the alkyl chains shows increased disorder in the form of gauche defects above due melting transition. Simulations also show that the melting transition is characterized by the complete disappearance of all-trans alkyl chains in the anchored bilayer, in agreement with experimental observations. A conformationally disordered chain has a larger effective cross-sectional area, and above due transition a uniformly tilted arrangement of the anchored chains call no longer be Sustained. At the melt the angular distribution of the orientation of the chains are 110 longer uniform; the chains are splayed allowing for increased space for individual chains of the anchored bilayer. This is reflected in a sharp rise in the ratio of the mean head-to-head to tail-to-tail distance of the chains of the bilayer at the transition resulting in in expansion of the bilayer thickness. The present MD simulations provide a simple explanation as to how changes in conformation of individual alkyl-chains gives rise to the observed increase in the interlayer lattice spacing of (CnH2n+1NH3)(2)PbI4 at the melting transition.
Resumo:
Zervamicin-IIB (Zrv-IIB) is a 16 residue peptaibol which forms voltage-activated, multiple conductance level channels in planar lipid bilayers. A molecular model of Zrv-IIB channels is presented. The structure of monomeric Zrv-IIB is based upon the crystal structure of Zervamicin-Leu. The helical backbone is kinked by a hydroxyproline residue at position 10. Zrv-IIB channels are modelled as helix bundles of from 4 to 8 parallel helices surrounding a central pore. The monomers are packed with their C-terminal helical segments in close contact, and the bundles are stabilized by hydrogen bonds between glutamine 11 and hydroxyproline 10 of adjacent helices. Interaction energy profiles for movement of three different probes species (K+, Cl- and water) through the central pore are analyzed. The conformations of: (a) the sidechain of glutamine 3; (b) the hydroxyl group of hydroxyproline 10; and (c) the C-terminal hydroxyl group are "optimized" in order to maximize favourable interactions between the channel and the probes, resulting in favourable interaction energy profiles for all three. This suggests that conformational flexibility of polar sidechains enables the channel lining to mimic an aqueous environment.
Resumo:
Separated local field (SLF) spectroscopy is a powerful technique to measure heteronuclear dipolar couplings. The method provides site-specific dipolar couplings for oriented samples such as membrane proteins oriented in lipid bilayers and liquid crystals. A majority of the SLF techniques utilize the well-known Polarization Inversion Spin Exchange at Magic Angle (PISEMA) pulse scheme which employs spin exchange at the magic angle under Hartmann-Hahn match. Though PISEMA provides a relatively large scaling factor for the heteronuclear dipolar coupling and a better resolution along the dipolar dimension, it has a few shortcomings. One of the major problems with PISEMA is that the sequence is very much sensitive to proton carrier offset and the measured dipolar coupling changes dramatically with the change in the carrier frequency. The study presented here focuses on modified PISEMA sequences which are relatively insensitive to proton offsets over a large range. In the proposed sequences, the proton magnetization is cycled through two quadrants while the effective field is cycled through either two or four quadrants. The modified sequences have been named as 2(n)-SEMA where n represents the number of quadrants the effective field is cycled through. Experiments carried out on a liquid crystal and a single crystal of a model peptide demonstrate the usefulness of the modified sequences. A systematic study under various offsets and Hartmann-Hahn mismatch conditions has been carried out and the performance is compared with PISEMA under similar conditions.
Resumo:
Antibodies specific to avian myeloblastosis virus envelope glycoprotein gp80 were raised. Immunoliposomes were prepared using anti-avian myeloblastosis virus envelope glycoprotein gp80 antibody. The antibody was palmitoylated to facilitate its incorporation into lipid bilayers of liposomes. The fluorescence emission spectra of palmitoylated IgG have exhibited a shift in emission maximum from 330 to 370 nm when it was incorporated into the liposomes. At least 50% of the incorporated antibody molecules were found to be oriented towards the outside in the liposomes. The average size of the liposome was found to be 300 A, and on an average, 15 antibody molecules were shown to be present in a liposome. When adriamycin encapsulated in immunoliposomes was incubated in a medium containing serum for 72 h, about 75% of the drug was retained in liposomes. In vivo localization studies, revealed an enhanced delivery of drug encapsulated in immunoliposomes to the target tissue, as compared to free drug or drug encapsulated in free liposomes. These data suggest a possible use of the drugs encapsulated in immunoliposomes to deliver the drugs in target areas, thereby reducing side effects caused by antiviral agents.
Resumo:
Separated Local Field (SLF) spectroscopy is a powerful tool for the determination of structure and dynamics of oriented systems such as membrane proteins oriented in lipid bilayers and liquid crystals. Of many SLF techniques available, Polarization Inversion Spin Exchange at Magic Angle (PISEMA) has found wide application due to its many favorable characteristics. However the pulse sequence suffers from its sensitivity to proton resonance frequency offset. Recently we have proposed a new sequence named 2(4)-SEMA (J. Chem. Phys. 132 (2010) 134301) that overcomes this problem of PISEMA. The present work demonstrates the advantage of 2(4)-SEMA as a highly sensitive SLF technique even for very large proton offset. 2(4)-SEMA has been designed for obtaining reliable dipolar couplings by switching the magic-angle spin-lock for protons over four quadrants as against the use of only two quadrants in PISEMA. It is observed that for on-resonance condition, 2(4)-SEMA gives rise to signal intensity comparable to or slightly higher than that from PISEMA. But under off-resonance conditions, intensities from 2(4)-SEMA are several fold higher than those from PISEMA. Comparison with another offset compensated pulse sequence, SAMPI4, also indicates a better intensity profile for 2(4)-SEMA. Experiments carried out on a single crystal of N-15 labeled N-acetyl-DL-valine and simulations have been used to study the relative performance of the pulse sequences considered. (C) 2010 Elsevier Inc. All rights reserved.