922 resultados para B-spline function
Resumo:
This paper reports on work in developing a finite element (FE) based die shape optimisation for net-shape forging of 3D aerofoil blades for aeroengine applications. Quantitative representations of aerofoil forging tolerances were established to provide a correlation between conventional dimensional and shape specifications in forging production and those quantified in FE simulation. A new direct compensation method was proposed, employing variable weighting factors to minimise the total forging tolerances in forging optimisation computations. A surface approximation using a B-spline surface was also developed to ensure improved die surface quality for die shape representation and design. For a Ni-alloy blade test case, substantial reduction in dimensional and shape tolerances was achieved using the developed die shape optimisation system.
Resumo:
A configuration-interaction approach, based on the use of B-spline basis sets combined with a model potential including monoelectronic and dielectronic core polarization effects, is employed to calculate term energies and wavefunctions for neutral Ca. Results are reported for singlet and triplet bound states, and some quasi-bound states above the lowest ionization limit, with angular momentum up to L = 4. Comparison with experiment and with other theoretical results shows that this method yields the most accurate energy values for neutral Ca obtained to date. Wavefunction compositions, necessary for labelling the levels, and the effects of semi-empirical polarization potentials on the wavefunctions are discussed, as are some recent identifications of doubly-excited states. It is shown that taking into account dielectronic core polarization changes the energies of the lowest terms in Ca significantly, in general by a few hundred cm(-1), the effect decreasing rapidly for the higher bound states. For Rydberg states with n approximate to 7 the accuracy of the results is often better than a few cm(-1). For series members (or perturbers) with a pronounced 3d character the error can reach 150 cm(-1). The wavefunctions are used to calculate oscillator strengths and lifetimes for a number of terms and these are compared with existing measurements. The agreement is good but points to a need for improved measurements.
Resumo:
The electronic redistribution of an ion or atom induced by a sudden recoil of the nucleus occurring during the emission or capture of a neutral particle is theoretically investigated. For one-electron systems, analytical expressions are derived for the electronic transition probabilities to bound and continuum states. The quality of a B-spline basis set approach is evaluated from a detailed comparison with the analytical results. This numerical approach is then used Io study the dynamics of two-electron systems (neutral He and Ne ) using correlated wavefunctions for both the target and daughter ions. The total transition probabilities to discrete states, autoionizing states and direct single- and double-ionization probabilities are calculated from the pseudospectra. Sum rules for transition probabilities involving an initial bound state and a complete final series are discussed.
Resumo:
We have developed a method, based on the use of B-spline basis sets and model potentials, for determining properties of systems with two or three electrons outside a polarizable closed-shell core. It is applied to the calculation of the electron affinity of Ca and the resulting value of 17.7 meV is in excellent agreement with the most recent experiments. It is found that the dielectronic core-valence interaction reduces the electron affinity by 39.5 meV.
Resumo:
In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.
Resumo:
The aim of this chapter is to introduce background concepts in nonlinear systems identification and control with artificial neural networks. As this chapter is just an overview, with a limited page space, only the basic ideas will be explained here. The reader is encouraged, for a more detailed explanation of a specific topic of interest, to consult the references given throughout the text. Additionally, as general books in the field of neural networks, the books by Haykin [1] and Principe et al. [2] are suggested. Regarding nonlinear systems identification, covering both classical and neural and neuro-fuzzy methodologies, Reference 3 is recommended. References 4 and 5 should be used in the context of B-spline networks.
Resumo:
All systems found in nature exhibit, with different degrees, a nonlinear behavior. To emulate this behavior, classical systems identification techniques use, typically, linear models, for mathematical simplicity. Models inspired by biological principles (artificial neural networks) and linguistically motivated (fuzzy systems), due to their universal approximation property, are becoming alternatives to classical mathematical models. In systems identification, the design of this type of models is an iterative process, requiring, among other steps, the need to identify the model structure, as well as the estimation of the model parameters. This thesis addresses the applicability of gradient-basis algorithms for the parameter estimation phase, and the use of evolutionary algorithms for model structure selection, for the design of neuro-fuzzy systems, i.e., models that offer the transparency property found in fuzzy systems, but use, for their design, algorithms introduced in the context of neural networks. A new methodology, based on the minimization of the integral of the error, and exploiting the parameter separability property typically found in neuro-fuzzy systems, is proposed for parameter estimation. A recent evolutionary technique (bacterial algorithms), based on the natural phenomenon of microbial evolution, is combined with genetic programming, and the resulting algorithm, bacterial programming, advocated for structure determination. Different versions of this evolutionary technique are combined with gradient-based algorithms, solving problems found in fuzzy and neuro-fuzzy design, namely incorporation of a-priori knowledge, gradient algorithms initialization and model complexity reduction.
Resumo:
Dissertação de Mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
But: Cette étude a pour but de comparer : a)la morphologie du plancher pelvien (PP), du col vésical et du sphincter urogénital strié (SUS) par IRM et b) la fonction du PP par palpation digitale (PERFECT scheme) chez les femmes âgées continentes ou avec incontinence urinaire à l’effort (IUE) et mixte (IUM). Méthode: Les femmes ont appris à contracter correctement leur PP et la fonction de leur PP a été évaluée. Une séance d’IRM dynamique 3T a suivi. Résultats: 66 femmes ont participé à l’étude. Les groupes étaient similaires en âge, IMC, nombre d’accouchements vaginaux et d’hystérectomie. La validité et la fidélité des différentes mesures anatomiques utilisées ont été confirmées au début de cette étude. Afin de contrôler l’effet potentiel de la taille du bassin sur les autres paramètres, les femmes ont été appariées par la longueur de leur inlet pelvien. Les femmes avec IUM ont un PP plus bas et un support des organes pelviens plus faible, selon leurs ligne M, angle LPC/Ligne H et hauteur de la jonction urétro-vésicale (UV). Les femmes avec IUE ont un PP similaire à celui des continentes, mais présentent plus d’ouverture du col vésical et un angle UV postérieur plus large au repos que les autres groupes. Il n’y a aucune différence de morphologie du SUS entre les groupes. De plus, selon les résultats du PERFECT scheme, les femmes avec IU ont une force du PP plus faible que les continentes. Les femmes avec IUM montrent aussi une faible élévation des muscles du PP à la contraction. Les femmes avec IUE ont, quant à elle, un problème de coordination à la toux. Conclusion: Les déficits causant l’IUE et l’IUM sont différents, mais supportent tous le rationnel des exercices du PP pour le traitement de l’IUE et l’IUM. Ces résultats supportent le besoin de traitements de rééducation spécifiques aux déficits de chacun des types d’IU.
Resumo:
La polyarthrite rhumatoïde (PR) est une maladie auto-immune chronique. Elle est caractérisée par une inflammation persistante touchant de multiples petites articulations, causant douleurs, rougeurs, gonflements et déformations. Des études menées auprès de patients et d’animaux ont démontré que certains auto-anticorps, cytokines et enzymes tissue-déstructives sont des médiateurs importants dans le développement de la PR. Au cours des deux dernières décennies, les traitements de fond (DMARDs en anglais) ont été démontrés très efficaces pour traiter la PR. D'autre part, des effets secondaires ont été rapportés pour ces traitements, par exemple l'augmentation du risque d'infections opportunistes. L’objectif de ce travail est d’acquérir des connaissances sur le rôle du TL1A (TNF-like molécule 1 A; TNFSF15) et son partenaire Nob1 (Pno1 ; YOR145c) dans la pathogenèse de la PR afin de découvrir de nouveaux médicaments contre ces molécules dans l'avenir. TL1A est un membre de la famille du TNF. Il déclenche des signaux co-stimulateurs via le récepteur de mort 3 (DR3) et induit la prolifération ainsi que la production des cytokines pro inflammatoires par les lymphocytes. Des données multiples suggèrent l'implication de la cascade TL1A-DR3 dans plusieurs maladies auto-immunes. Donc, nous avons proposé les hypothèses suivantes:1) la production locale de TL1A dans les articulations est un composant d’un cercle vicieux qui aggrave la PR; 2) dans la PR, la production de TL1A dans les organes lymphoïde augmente la production d’auto-anticorps pathogénique. Au cours de ce travail, nous avons démontré que la TL1A aggrave la maladie chez les souris où l’arthrite a été induite par le collagène (AIC). Par ailleurs, nous avons constaté que l’expression de TL1A est élevée dans les tissus atteints de PR ainsi que dans les ganglions lymphatiques drainant de la souris AIC. Mécaniquement, nous avons découvert que la TL1A est induite par le TNF-α et IL-17 produits par les cellules T in vitro. Ces résultats montrent directement que les TL1A-DR3 jouent un rôle essentiel dans la pathogenèse de la PR. De plus, afin de poursuivre notre étude, la TL1A a été génétiquement supprimée dans les souris (TL1A KO). Nous avons montré que les souris TL1A KO n’ont aucune anomalie apparente et aucun dysfonctionnement du système immunitaire dans des conditions normales. Cependant, ces souris manifestent des AIC améliorées et une réduction significative des niveaux d'anticorps, anti-collagène du type II i dans le sérum. Nous avons trouvé que les ganglions lymphatiques de drainage (dLNs) de souris KO étaient plus petites avec une cellularité inférieure comparativement aux souris WT de 14 jours après l’immunisation. De plus, nous avons découvert que le DR3 a été exprimé par les cellules plasmatiques dans l’étape de la différenciation terminale et ces cellules surviennent mieux en présence de TL1A. La conclusion de cette étude apporte des nouvelles connaissances sur le rôle de TL1A qui amplifie les réponses humorales d’AIC. Nous avons suggéré que TL1A pourrait augmenter la réponse d’initiation d'anticorps contre collagène II (CII) ainsi que prolonger la survie des cellules plasmatiques. Une autre molécule qui nous intéresse est Pno1. Des études antérieures menées chez la levure ont suggéré que Pno1 est essentielle pour la néogénèse du protéasome et du ribosome Le protéasome étant crucial pour la différenciation terminale des cellules plasmatiques pendant les réponses humorales chez les mammifères, nous avons donc supposé que Pno1 joue un rôle dans la production d'anticorps pathogenique dans la PR via la voie du protéasome. Nous avons donc généré des souris génétiquement modifiées pour Pno1 afin d’étudier la fonction de Pno1 in vivo. Cependant, une mutation non-sens dans le Pno1 provoque une létalité embryonnaire à un stade très précoce chez les souris. D'autre part, une réduction de 50% de Pno1 ou une surexpression de Pno1 n’ont aucun effet ni sur le fonctionnent des cellules T et B, ni sur les activités du protéasome ainsi que sur la réponse humorale dans l’AIC. Ces résultats suggèrent que Pno1 est une molécule essentielle sans redondance. Par conséquent, il n’est pas une cible appropriée pour le développement de médicaments thérapeutiques. En conclusion, nos études ont révélé que la TL1A n’est pas essentielle pour maintenir les fonctions du système immunitaire dans des conditions normales. En revanche, il joue un rôle critique dans la pathogenèse de la PR en favorisant l'inflammation locale et la réponse humorale contre des auto-antigènes. Par conséquent, une inhibition de la TL1A pourrait être une stratégie thérapeutique pour le traitement de la PR. Au contraire, Pno1 est essentiel pour la fonction normale des cellules. Une délétion totale pourrait entraîner des conséquences graves. Il n’est pas une cible appropriée pour développer des médicaments de la PR.
Resumo:
A system identification algorithm is introduced for Hammerstein systems that are modelled using a non-uniform rational B-spline (NURB) neural network. The proposed algorithm consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples are utilized to demonstrate the efficacy of the proposed approach.
Resumo:
Single-carrier (SC) block transmission with frequency-domain equalisation (FDE) offers a viable transmission technology for combating the adverse effects of long dispersive channels encountered in high-rate broadband wireless communication systems. However, for high bandwidthefficiency and high power-efficiency systems, the channel can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such nonlinear Hammerstein channels, the standard SC-FDE scheme no longer works. This paper advocates a complex-valued (CV) B-spline neural network based nonlinear SC-FDE scheme for Hammerstein channels. Specifically, We model the nonlinear HPA, which represents the CV static nonlinearity of the Hammerstein channel, by a CV B-spline neural network, and we develop two efficient alternating least squares schemes for estimating the parameters of the Hammerstein channel, including both the channel impulse response coefficients and the parameters of the CV B-spline model. We also use another CV B-spline neural network to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard least squares algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse B-spline neural network model obtained in time domain. Extensive simulation results are included to demonstrate the effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels.
Resumo:
A practical orthogonal frequency-division multiplexing (OFDM) system can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. In this contribution, we advocate a novel nonlinear equalization scheme for OFDM Hammerstein systems. We model the nonlinear HPA, which represents the static nonlinearity of the OFDM Hammerstein channel, by a B-spline neural network, and we develop a highly effective alternating least squares algorithm for estimating the parameters of the OFDM Hammerstein channel, including channel impulse response coefficients and the parameters of the B-spline model. Moreover, we also use another B-spline neural network to model the inversion of the HPA’s nonlinearity, and the parameters of this inverting B-spline model can easily be estimated using the standard least squares algorithm based on the pseudo training data obtained as a byproduct of the Hammerstein channel identification. Equalization of the OFDM Hammerstein channel can then be accomplished by the usual one-tap linear equalization as well as the inverse B-spline neural network model obtained. The effectiveness of our nonlinear equalization scheme for OFDM Hammerstein channels is demonstrated by simulation results.
Resumo:
O objetivo primordial desse trabalho está concentrado no estudo de Curvas NURBS (B-spline Racional N˜ao-Uniforme). A literatura em português sobre NURBS é escassa, pouco difundida e os textos e artigos existentes tendem a ser rigorosos, longos e teóricos. Assim, o presente estudo está direcionado para os conceitos matemáticos de NURBS, para o qual foi utilizado uma ferramenta chamada DesignMentor com a finalidade de testar os algoritmos desses conceitos. NURBS são funções paramétricas que podem representar qualquer tipo de curva. NURBS são usadas em computação gráfica na indústria de CAD/CAM e estão sendo consideradas um padrão para criar e representar objetos complexos (indústria automobilística, aviação e embarcação). As ferramentas de criação gráfica mais sofisticadas provêem uma interface para usar NURBS, que são flexíveis suficiente para projetar uma grande variedade de formas. Hoje é possível verificar o uso expandido de NURBS, modelando objetos para as artes visuais, arte e escultura; também estão sendo usados para modelar cenas para aplicações de realidade virtual. NURBS trabalha bem em modelagem 3D, permitindo facilidade para manipular e controlar vértices, controlar curvatura e suavidade de contornos. NURBS provêm uma base matemática, unificada para representar formas analíticas e livres além de manter exatidão e independência de resolução matemática.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)