818 resultados para Böök, Mikael
Resumo:
The settling characteristics of cell debris and inclusion bodies prior to, and following, fractionation in a disc-stack centrifuge were measured using Cumulative Sedimentation Analysis (CSA) and Centrifugal Disc photosedimentation (CDS). The impact of centrifuge feedrate and repeated homogenisation on both cell debris and inclusion body collection efficiency was investigated. Increasing the normalised centrifuge feedrate (Q/Sigma) from 1.32 x 10(-9) m s(-1) to 3.97 x 10(-9) m s(-1) leads to a 36% increase in inclusion body paste purity. Purity may also be improved by repeated homogenisation. Increasing the number of homogeniser passes results in smaller cell debris size whilst leaves inclusion body size unaltered. At a normalised centrifuge feedrate of 2.65 x 10(-9) m s(-1), increasing the number of homogeniser passes from two (2) to ten (10) improved overall inclusion body paste purity by 58%. Grade-efficiency curves for both the cell debris and inclusion bodies have also been generated in this study. The data are described using an equation developed by Mannweiler (1989) with parameters of k = 0.15-0.26 and n = 2.5-2.6 for inclusion bodies, and k = 0.12-0.14 and n = 2.0-2.2 for cell debris. This is the first accurate experimentally-determined grade efficiency curve for cell debris. Previous studies have simply estimated debris grade efficiency curves using an approximate debris size distribution and grade efficiency curves determined with 'ideal particles' (e.g. spherical PVA particles). The findings of this study may be used to simulate and optimise the centrifugal fractionation of inclusion bodies from cell debris.
Resumo:
Extraction of intracellular protein from Escherichia coli is traditionally achieved by mechanical disruption. A chemical treatment that destroys the integrity of the bacterial cell wall and could provide an alternative technique is examined in this study. Treatment with a combination of the chelating agent ethylenediaminetetraacetate (EDTA) (greater than 0.3 mM) and the chaotropic agent urea (6 M) is highly effective at releasing protein from uninduced E. coli. The 6 M urea in the presence of 3 mM EDTA can release cytoplasmic protein from both logarithmic-phase and stationary-phase E. coli cells at levels equivalent to mechanical disruption. The concentrations of the two chemical agents were the major variables affecting the maximum levels of protein release. Several minor variables and interactions were also identified. The kinetics of protein release is first order. For 2, 4, and 6 M urea with 3 mM EDTA, the time constant is approximately 2.5 min independent of urea concentration. Kinetics for 3 mM EDTA without urea is considerably slower, with a time constant of 12.3 min. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Chloramphenicol acetyl transferase (CAT) protein and mRNA levels in E. coli were determined following induction of a tac::cat construct by isopropyl-beta-thiogalactopyranoside (IPTG). High cat mRNA levels did not directly reflect CAT protein levels, in either shakeflask experiments or fermentations. Furthermore, concentrations of IPTG resulting in the highest levels of expression of cat mRNA, were different to those resulting in highest levels of CAT protein. The data suggest that high transcriptional activities lead to limitations at the translational level.
Resumo:
A new method to measure Escherichia coil cell debris size after homogenization is presented. It is based on cumulative sedimentation analysis under centrifugal force, coupled with Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis of sedimented proteins. The effects that fermentation and homogenization conditions have on the resulting debris distributions were investigated using this method. Median debris size decreased significantly from approximately 0.5 mu m to 0.3 mu m as the number of homogenization passes increased from 2 to 10. Under identical homogenization conditions, uninduced host cells in stationary phase had a larger debris size than exponential cells after 5 homogenizer passes. This difference was not evident after 2 or in passes, possibly because of confounding intact cells and the existence of a minimum debris size for the conditions investigated. Recombinant cells containing protein inclusion bodies had the smallest debris size following homogenization. The method was also used to measure the size distribution of inclusion bodies. This result compared extremely well with an independent determination using centrifugal disc photosedimentation (CDS), thus validating the method. This is the first method that provides accurate size distributions of E. coli debris without the need for sample pretreatment, theoretical approximations (e.g. extinction coefficients), or the separation of debris and inclusion bodies prior to analysis. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Renaturation of protein expressed as inclusion bodies within Escherichia coli is a key step in many bioprocesses. Operating conditions for the refolding step dramatically affect the amount of protein product recovered, and hence profoundly influence the process economics. The first systematic comparison of refolding conducted in batch, fed-batch and continuous stirred-tank reactors is provided Refolding is modeled as kinetic competition between first-order refolding (equilibrium reaction) and irreversible aggregation (second-order). Simulations presented allow direct comparison between different flowsheets and refolding schemes using a dimensionless economic objective. As expected from examination of the reaction kinetics, batch operation is the most inefficient merle. For the base process considered, the overall cost of fed-batch and continuous refolding is virtually identical (less than half that of the batch process). Reactor selection and optimization of refolding using overall economics are demonstrated to be vitally important.
Resumo:
Experimental data for E. coli debris size reduction during high-pressure homogenisation at 55 MPa are presented. A mathematical model based on grinding theory is developed to describe the data. The model is based on first-order breakage and compensation conditions. It does not require any assumption of a specified distribution for debris size and can be used given information on the initial size distribution of whole cells and the disruption efficiency during homogenisation. The number of homogeniser passes is incorporated into the model and used to describe the size reduction of non-induced stationary and induced E. coil cells during homogenisation. Regressing the results to the model equations gave an excellent fit to experimental data ( > 98.7% of variance explained for both fermentations), confirming the model's potential for predicting size reduction during high-pressure homogenisation. This study provides a means to optimise both homogenisation and disc-stack centrifugation conditions for recombinant product recovery. (C) 1997 Elsevier Science Ltd.
Resumo:
Insulin-like growth factor-I (IGF-I) is a preiotrophic polypeptide which appears to have roles both as a circulating endocrine hormone and as a locally synthesized paracrine or autocrine tissue factor. IGF-I plays a major role in regulating the growth of cells in vivo and in vitro and initiates metabolic and mitogenic processes in a wide variety of cell types by binding to specific type I receptors in the plasma membrane, In this study, we report the distribution of IGF-I receptors in odontogenic cells at the ultrastructural level using the high resolution protein A-gold technique, In the pre-secretory stage, very little gold label was visible over the ameloblasts and odontoblasts, During the secretory stage the label was mostly seen in association with the cell membranes and endoplasmic reticulum of the ameloblasts. Lysosome-like elements in the post-secretory stage were labelled as well as multivesicular dense bodies, Very little labelling was encountered in the ameloblasts in the transitional stage, where apoptotic bodies were clearly visible, The maturation stage also exhibited labelling of the secretory-like granules in the distal surface. The presence of gold particles over the plasma membrane is an indication that IGF-I receptor is a membrane-bound receptor. Furthermore, the intracellular distribution of the label over the endoplasmic reticulum supports the local synthesis of the IGF-I receptor. The absence of labelling over the transitional ameloblasts suggests that the transitional stage may require the non-expression of IGF-I as a prerequiste or even a trigger for apoptosis.
Resumo:
In the kallikrein-kinin and renin-angiotensin systems the main receptors, B-1 and B-2 (kinin receptors) and AT(1) and AT(2) (angiotensin receptors) respectively, are seven-transmembrane domain G-protein-coupled receptors. Considering that the B, agonists Des-Arg(9)-BK (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe), Lys-desArg(9)-BK or Des-Arg(10)-KD (Lys-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe) and the AT, agonist (Asp-Arg-Val-Tyr-lle-His-Pro-Phe) have the same two residues at the C-terminal region (i.e. Pro-Phe), we hypothesized that TM V and TM VI of the B-1 receptor could play an essential role in agonist binding and activity, being these regions receptor sites for binding the C-terminal sequences of Des-Arg-kinins similarly to that observed to AT, receptor. To investigate this hypothesis, we replaced Arg(212) for Ala at the top of the TM V and the sequence 274-282 (CPYHFFAFL) in TM VI of the rat kinin B, receptor by the 32 receptor homologous sequence, 289-297 (FPFQISTFL) and subsequently analyzed the consequences of these mutations by competition binding and functional assays. Despite correct expression, observed at the mRNA and protein level by RT-PCR and confocal microscopy, respectively, no agonist binding and function was verified for the mutated receptors. Therefore, our results suggest an important role for Arg(212) in the TM V and a region of TM VI of rat B, receptor in the interaction with the C-terminal residues of Des-Arg-kinins, similar to that observed with AngII. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In the present study, we evaluated the kinin system components in the plasma of patients with systemic lupus erythematosus exhibiting mucocutaneous lesions. Fifteen women with active cutaneous lupus (P) and 15 normal healthy women (C) were studied. Low molecular (LKg) and high molecular (HKg) weight kininogen were determined by ELISA (expressed mu g Bk/ml). The activities of tissue kallikrein (TKal), plasma kallikrein (PKal) and kininase II were assayed by their action on selective substrates. Statistical analysis was performed using the Mann-Whitney test. The patients presented increased plasma levels of LKg (P = 2.98, C = 0.79) and HKg (P = 1.78, C = 0.5) associated with the increased activity of PKal (P = 2.50, C = 1.63 U/ml), TKal (P = 1.87, C = 1.30 mu M pNa/ml) and kininase II (P = 1.50, C = 0.51 mu M Hys-Leu/ml), when compared to the values observed in the control group (P < 0.0001 for each comparison). Thus, the increased concentration of all parameters of the kinin system in these patients indicate an overactivity of the kinin system in the acute phase of lupus, corroborating with the participation of these mediators in lupus pathogenesis.
Resumo:
Endothelial dysfunction has been linked to a decrease in nitric oxide (NO) bioavailability and attenuated endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation. The small (SK(Ca)) and intermediate (IK(Ca)) calcium-activated potassium channels play a key role in endothelium-dependent relaxation. Because the repressor element 1-silencing transcription factor (REST) negatively regulates IK(Ca) expression, we hypothesized that augmented REST and decreased IK(Ca) expression contributes to impaired endothelium-dependent vasodilation associated with hypertension. Acetylcholine (ACh) responses were slightly decreased in small mesenteric arteries from male stroke-prone spontaneously hypertensive rats (SHRSPs) versus arteries from Wistar Kyoto (WKY) rats. Incubation with N-nitro-L-arginine methyl ester (L-NAME; 100 mu mol/L) and indomethacin (100 mu mol/L) greatly impaired ACh responses in vessels from SHRSP. lberiotoxin (0.1 mu mol/L), which is a selective inhibitor of large-conductance K(Ca) (BK(Ca)) channels, did not modify EDHF-mediated vasodilation in SHRSP or WKY. UCL-1684 (0.1 mu mol/L.), which is a selective inhibitor of SKCa channels, almost abolished EDHF-mediated vasodilation in WKY and decreased relaxation in SHRSP. 1-((2-chlorophenyl)diphenylmethyl)-1H-pyrazole (TRAM-34; 10 mu mol/L) and charybdotoxin (0.1 mu mol/L), which are both IKCa inhibitors, produced a small decrease of EDHF relaxation in WKY but completely abrogated EDHF vasodilation in SHRSP. EDHF-mediated relaxant responses were completely abolished in both groups by simultaneous treatment with UCL-1684 and TRAM-34 or charybdotoxin. Relaxation to SK(Ca)/IK(Ca) channels agonist NS-309 was decreased in SHRSP arteries. The expression of SK(Ca) was decreased, whereas IK(Ca) was increased in SHRSP mesenteric arteries. REST expression was reduced in arteries from SHRSP. Vessels incubated with TRAM-34 (10 mu mol/L) for 24h displayed reduced REST expression and demonstrated no differences in IK(Ca). In conclusion, IK(Ca) channel upregulation, via decreased REST, seems to compensate deficient activity of SK(Ca) channels in the vasculature of spontaneously hypertensive rats. (Translational Research 2009; 154:183-193)
Large-conductance calcium-activated potassium channels in neonatal rat intracardiac ganglion neurons
Resumo:
The properties of single Ca2+-activated K+ (BK) channels in neonatal rat intracardiac neurons were investigated using the patch-clamp recording technique. In symmetrical 140 mM K+, the single-channel slope conductance was linear in the voltage range -60/+60 mV. and was 207+/-19 pS. Na+ ions were not measurably permeant through the open channel. Channel activity increased with the cytoplasmic free Ca2+ concentration ([Ca2+],) with a Hill plot giving a half-saturating [Ca2+] (K-0.5) of 1.35 muM and slope of congruent to3. The BK channel was inhibited reversibly by external tetraethylammonium (TEA) ions, charybdotoxin, and quinine and was resistant to block by 4-aminopyridine and apamin. Ionomycin (1-10 muM) increased BK channel activity in the cell-attached recording configuration. The resting activity was consistent with a [Ca2+](i)
Resumo:
The long short-term memory (LSTM) is not the only neural network which learns a context sensitive language. Second-order sequential cascaded networks (SCNs) are able to induce means from a finite fragment of a context-sensitive language for processing strings outside the training set. The dynamical behavior of the SCN is qualitatively distinct from that observed in LSTM networks. Differences in performance and dynamics are discussed.