975 resultados para Autonomous ground robot
Resumo:
This paper presents a mapping and navigation system for a mobile robot, which uses vision as its sole sensor modality. The system enables the robot to navigate autonomously, plan paths and avoid obstacles using a vision based topometric map of its environment. The map consists of a globally-consistent pose-graph with a local 3D point cloud attached to each of its nodes. These point clouds are used for direction independent loop closure and to dynamically generate 2D metric maps for locally optimal path planning. Using this locally semi-continuous metric space, the robot performs shortest path planning instead of following the nodes of the graph --- as is done with most other vision-only navigation approaches. The system exploits the local accuracy of visual odometry in creating local metric maps, and uses pose graph SLAM, visual appearance-based place recognition and point clouds registration to create the topometric map. The ability of the framework to sustain vision-only navigation is validated experimentally, and the system is provided as open-source software.
Resumo:
In this paper, we present a monocular vision based autonomous navigation system for Micro Aerial Vehicles (MAVs) in GPS-denied environments. The major drawback of monocular systems is that the depth scale of the scene can not be determined without prior knowledge or other sensors. To address this problem, we minimize a cost function consisting of a drift-free altitude measurement and up-to-scale position estimate obtained using the visual sensor. We evaluate the scale estimator, state estimator and controller performance by comparing with ground truth data acquired using a motion capture system. All resources including source code, tutorial documentation and system models are available online.
Resumo:
This paper presents a practical scheme to control heave motion for hover and automatic landing of a Rotary-wing Unmanned Aerial Vehicle (RUAV) in the presence of strong horizontal gusts. A heave motion model is constructed for the purpose of capturing dynamic variations of thrust due to horizontal gusts. Through construction of an effective gust estimator, a feedback-feedforward controller is developed which uses available measurements from onboard sensors. The proposed controller dynamically and synchronously compensates for aerodynamic variations of heave motion, enhancing disturbance-attenuation capability of the RUAV. Simulation results justify the reliability and efficiency of the suggested gust estimator. Moreover, flight tests conducted on our Eagle helicopter verify suitability of the proposed control strategy for small RUAVs operating in a gusty environment.
Resumo:
This document describes large, accurately calibrated and time-synchronised datasets, gathered in controlled environmental conditions, using an unmanned ground vehicle equipped with a wide variety of sensors. These sensors include: multiple laser scanners, a millimetre wave radar scanner, a colour camera and an infra-red camera. Full details of the sensors are given, as well as the calibration parameters needed to locate them with respect to each other and to the platform. This report also specifies the format and content of the data, and the conditions in which the data have been gathered. The data collection was made in two different situations of the vehicle: static and dynamic. The static tests consisted of sensing a fixed ’reference’ terrain, containing simple known objects, from a motionless vehicle. For the dynamic tests, data were acquired from a moving vehicle in various environments, mainly rural, including an open area, a semi-urban zone and a natural area with different types of vegetation. For both categories, data have been gathered in controlled environmental conditions, which included the presence of dust, smoke and rain. Most of the environments involved were static, except for a few specific datasets which involve the presence of a walking pedestrian. Finally, this document presents illustrations of the effects of adverse environmental conditions on sensor data, as a first step towards reliability and integrity in autonomous perceptual systems.
Resumo:
Considering the wide spectrum of situations that it may encounter, a robot navigating autonomously in outdoor environments needs to be endowed with several operating modes, for robustness and efficiency reasons. Indeed, the terrain it has to traverse may be composed of flat or rough areas, low cohesive soils such as sand dunes, concrete road etc... Traversing these various kinds of environment calls for different navigation and/or locomotion functionalities, especially if the robot is endowed with different locomotion abilities, such as the robots WorkPartner, Hylos [4], Nomad or the Marsokhod rovers.
Resumo:
Considering the wide spectrum of situations that it may encounter, a robot navigating autonomously in outdoor environments needs to be endowed with several operating modes, for robustness and efficiency reasons. Indeed, the terrain it has to traverse may be composed of flat or rough areas, low cohesive soils such as sand dunes, concrete road etc. . .Traversing these various kinds of environment calls for different navigation and/or locomotion functionalities, especially if the robot is endowed with different locomotion abilities, such as the robots WorkPartner, Hylos [4], Nomad or the Marsokhod rovers. Numerous rover navigation techniques have been proposed, each of them being suited to a particular environment context (e.g. path following, obstacle avoidance in more or less cluttered environments, rough terrain traverses...). However, seldom contributions in the literature tackle the problem of selecting autonomously the most suited mode [3]. Most of the existing work is indeed devoted to the passive analysis of a single navigation mode, as in [2]. Fault detection is of course essential: one can imagine that a proper monitoring of the Mars Exploration Rover Opportunity could have avoided the rover to be stuck during several weeks in a dune, by detecting non-nominal behavior of some parameters. But the ability to recover the anticipated problem by switching to a better suited navigation mode would bring higher autonomy abilities, and therefore a better overall efficiency. We propose here a probabilistic framework to achieve this, which fuses environment related and robot related information in order to actively control the rover operations.
Resumo:
Autonomous navigation and locomotion of a mobile robot in natural environments remain a rather open issue. Several functionalities are required to complete the usual perception/decision/action cycle. They can be divided in two main categories : navigation (perception and decision about the movement) and locomotion (movement execution). In order to be able to face the large range of possible situations in natural environments, it is essential to make use of various kinds of complementary functionalities, defining various navigation and locomotion modes. Indeed, a number of navigation and locomotion approaches have been proposed in the literature for the last years, but none can pretend being able to achieve autonomous navigation and locomotion in every situation. Thus, it seems relevant to endow an outdoor mobile robot with several complementary navigation and locomotion modes. Accordingly, the robot must also have means to select the most appropriate mode to apply. This thesis proposes the development of such a navigation/locomotion mode selection system, based on two types of data: an observation of the context to determine in what kind of situation the robot has to achieve its movement and an evaluation of the behavior of the current mode, made by monitors which influence the transitions towards other modes when the behavior of the current one is considered as non satisfying. Hence, this document introduces a probabilistic framework for the estimation of the mode to be applied, some navigation and locomotion modes used, a qualitative terrain representation method (based on the evaluation of a difficulty computed from the placement of the robot's structure on a digital elevation map), and monitors that check the behavior of the modes used (evaluation of rolling locomotion efficiency, robot's attitude and configuration watching. . .). Some experimental results obtained with those elements integrated on board two different outdoor robots are presented and discussed.
Resumo:
This work aims to promote integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicles equipped with a camera and a 2D laser range finder. A method to check for inconsistencies between the data provided by these two heterogeneous sensors is proposed and discussed. First, uncertainties in the estimated transformation between the laser and camera frames are evaluated and propagated up to the projection of the laser points onto the image. Then, for each pair of laser scan-camera image acquired, the information at corners of the laser scan is compared with the content of the image, resulting in a likelihood of correspondence. The result of this process is then used to validate segments of the laser scan that are found to be consistent with the image, while inconsistent segments are rejected. Experimental results illustrate how this technique can improve the reliability of perception in challenging environmental conditions, such as in the presence of airborne dust.
Resumo:
This work aims to promote reliability and integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicle (UGV) autonomy. For this purpose, a comprehensive UGV system, comprising many different exteroceptive and proprioceptive sensors has been built. The first contribution of this work is a large, accurately calibrated and synchronised, multi-modal data-set, gathered in controlled environmental conditions, including the presence of dust, smoke and rain. The data have then been used to analyse the effects of such challenging conditions on perception and to identify common perceptual failures. The second contribution is a presentation of methods for mitigating these failures to promote perceptual integrity in adverse environmental conditions.
Resumo:
The vast majority of current robot mapping and navigation systems require specific well-characterized sensors that may require human-supervised calibration and are applicable only in one type of environment. Furthermore, if a sensor degrades in performance, either through damage to itself or changes in environmental conditions, the effect on the mapping system is usually catastrophic. In contrast, the natural world presents robust, reasonably well-characterized solutions to these problems. Using simple movement behaviors and neural learning mechanisms, rats calibrate their sensors for mapping and navigation in an incredibly diverse range of environments and then go on to adapt to sensor damage and changes in the environment over the course of their lifetimes. In this paper, we introduce similar movement-based autonomous calibration techniques that calibrate place recognition and self-motion processes as well as methods for online multisensor weighting and fusion. We present calibration and mapping results from multiple robot platforms and multisensory configurations in an office building, university campus, and forest. With moderate assumptions and almost no prior knowledge of the robot, sensor suite, or environment, the methods enable the bio-inspired RatSLAM system to generate topologically correct maps in the majority of experiments.
Resumo:
This paper describes the experimental evaluation of a novel Autonomous Surface Vehicle capable of navigating complex inland water reservoirs and measuring a range of water quality properties and greenhouse gas emissions. The 16 ft long solar powered catamaran is capable of collecting water column profiles whilst in motion. It is also directly integrated with a reservoir scale floating sensor network to allow remote mission uploads, data download and adaptive sampling strategies. This paper describes the onboard vehicle navigation and control algorithms as well as obstacle avoidance strategies. Experimental results are shown demonstrating its ability to maintain track and avoid obstacles on a variety of large-scale missions and under differing weather conditions, as well as its ability to continuously collect various water quality parameters complimenting traditional manual monitoring campaigns.
Resumo:
This paper describes the development of a novel vision-based autonomous surface vehicle with the purpose of performing coordinated docking manoeuvres with a target, such as an autonomous underwater vehicle, at the water's surface. The system architecture integrates two small processor units; the first performs vehicle control and implements a virtual force based docking strategy, with the second performing vision-based target segmentation and tracking. Furthermore, the architecture utilises wireless sensor network technology allowing the vehicle to be observed by, and even integrated within an ad-hoc sensor network. Simulated and experimental results are presented demonstrating the autonomous vision- based docking strategy on a proof-of-concept vehicle.
Resumo:
This paper describes a novel obstacle detection system for autonomous robots in agricultural field environments that uses a novelty detector to inform stereo matching. Stereo vision alone erroneously detects obstacles in environments with ambiguous appearance and ground plane such as in broad-acre crop fields with harvested crop residue. The novelty detector estimates the probability density in image descriptor space and incorporates image-space positional understanding to identify potential regions for obstacle detection using dense stereo matching. The results demonstrate that the system is able to detect obstacles typical to a farm at day and night. This system was successfully used as the sole means of obstacle detection for an autonomous robot performing a long term two hour coverage task travelling 8.5 km.
Resumo:
This paper describes a novel vision based texture tracking method to guide autonomous vehicles in agricultural fields where the crop rows are challenging to detect. Existing methods require sufficient visual difference between the crop and soil for segmentation, or explicit knowledge of the structure of the crop rows. This method works by extracting and tracking the direction and lateral offset of the dominant parallel texture in a simulated overhead view of the scene and hence abstracts away crop-specific details such as colour, spacing and periodicity. The results demonstrate that the method is able to track crop rows across fields with extremely varied appearance during day and night. We demonstrate this method can autonomously guide a robot along the crop rows.
Resumo:
A method for calculating visual odometry for ground vehicles with car-like kinematic motion constraints similar to Ackerman's steering model is presented. By taking advantage of this non-holonomic driving constraint we show a simple and practical solution to the odometry calculation by clever placement of a single camera. The method has been implemented successfully on a large industrial forklift and a Toyota Prado SUV. Results from our industrial test site is presented demonstrating the applicability of this method as a replacement for wheel encoder-based odometry for these vehicles.