995 resultados para Automobile driving simulation.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pages are printed parallel to inner margin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On verso: 6th International Road Congress; 457 Lakeshore. On verso: Left to right: Fred Smith, R. E. Olds, J.J. Brady?

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On verso: 6th International Road Congress; 457 Lakeshore

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five pamphlets, published separately in Sportsmanlike driving series, issued with preliminary matter and general t.-p.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the insight gained from 2-D particle models, and given that the dynamics of crustal faults occur in 3-D space, the question remains, how do the 3-D fault gouge dynamics differ from those in 2-D? Traditionally, 2-D modeling has been preferred over 3-D simulations because of the computational cost of solving 3-D problems. However, modern high performance computing architectures, combined with a parallel implementation of the Lattice Solid Model (LSM), provide the opportunity to explore 3-D fault micro-mechanics and to advance understanding of effective constitutive relations of fault gouge layers. In this paper, macroscopic friction values from 2-D and 3-D LSM simulations, performed on an SGI Altix 3700 super-cluster, are compared. Two rectangular elastic blocks of bonded particles, with a rough fault plane and separated by a region of randomly sized non-bonded gouge particles, are sheared in opposite directions by normally-loaded driving plates. The results demonstrate that the gouge particles in the 3-D models undergo significant out-of-plane motion during shear. The 3-D models also exhibit a higher mean macroscopic friction than the 2-D models for varying values of interparticle friction. 2-D LSM gouge models have previously been shown to exhibit accelerating energy release in simulated earthquake cycles, supporting the Critical Point hypothesis. The 3-D models are shown to also display accelerating energy release, and good fits of power law time-to-failure functions to the cumulative energy release are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adult pedestrian accident data has demonstrated that the risk of being killed or seriously injured varies with age and gender. A range of factors affecting road crossing choices of 218 adults aged 17-90+ were examined in a simulation study using filmed real traffic. With increasing age, women were shown to make more unsafe crossing decisions, to leave small safety margins and to become poorer at estimating their walking speed. However, the age effects on all of these were ameliorated by driving experience. Men differed from women in that age was not a major factor in predicting unsafe crossing decisions. Rather, reduced mobility was the key factor, leading them to make more unsafe crossings and delay longer in leaving the kerb. For men, driving experience did not predict unsafe road crossing decisions. Although male drivers were more likely to look both ways before crossing than male non-drivers, the impact of being a driver had a negative effect in terms of smaller safety margins and delay in leaving the kerb. The implications of the different predictor variables for men and women for unsafe road crossing are discussed and possible reasons for the differences explored.