928 resultados para Automatic meteorological stations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Under land and climate change scenarios, agriculture has experienced water competitions among other sectors in the São Paulo state, Brazil. On the one hand, in several occasions, in the northeastern side of this state, nowadays sugar-cane is expanding, while coffee plantations are losing space. On the other hand, both crops have replaced the natural vegetation composed by Savannah and Atlantic Coastal Forest species. Under this dynamic situation, geosciences are valuable tools for evaluating the large-scale energy and mass exchanges between these diffe rent agro-ecosystems and the lower atmosphere. For quantification of the energy balance components in these mixed agro-ecosystems, the bands 1 and 2 from the MODIS product MOD13Q1 we re used throughout SA FER (Surface Algorithm for Evapotranspiration Retrieving) algorithm, which was applied together with a net of 12 automatic weather stations, during the year 2015 in the main sugar cane and coffee growing regions, located at the no rtheastern side of the state. The fraction of the global solar radiation (R G ) transformed into net radiation (Rn) was 52% for sugar cane and 53% for both, coffee and natural vegetation. The respective annual fractions of Rn used as λ E were 0.68, 0.87 and 0.77, while for the sensible heat (H) fluxes they were 0.27, 0.07 and 0.16. From April to July, heat advection raised λ E values above Rn promoting negative H, however these effects were much and less strong in coffee and sugar cane crop s, respectively. The smallest daily Rn fraction for all agro-ecosystems was for the soil heat flux (G), with averages of 5%, 6% and 7% in sugar cane, coffee and natural vegetation. From the energy balance analyses, we could conclude that, sugar-cane crop presented lower annual water consumption than that for coffee crop , what can be seen as an advantage in situations of water scarcity. However, the replacement of natural vegetation by su gar cane can contribute for warming th e environment, while when this occur with coffee crop there was noticed co oling conditions. The large scale modeling satisfactory results confirm the suitability of using MODIS products togeth er with weather stations to study the energy balance components in mixed agro-ecosystems under land-use and climate change conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis analyzes the impact of heat extremes in urban and rural environments, considering processes related to severely high temperatures and unusual dryness. The first part deals with the influence of large-scale heatwave events on the local-scale urban heat island (UHI) effect. The temperatures recorded over a 20-year summer period by meteorological stations in 37 European cities are examined to evaluate the variations of UHI during heatwaves with respect to non-heatwave days. A statistical analysis reveals a negligible impact of large-scale extreme temperatures on the local daytime urban climate, while a notable exacerbation of UHI effect at night. A comparison with the UrbClim model outputs confirms the UHI strengthening during heatwave episodes, with an intensity independent of the climate zone. The investigation of the relationship between large-scale temperature anomalies and UHI highlights a smooth and continuous dependence, but with a strong variability. The lack of a threshold behavior in this relationship suggests that large-scale temperature variability can affect the local-scale UHI even in different conditions than during extreme events. The second part examines the transition from meteorological to agricultural drought, being the first stage of the drought propagation process. A multi-year reanalysis dataset involving numerous drought events over the Iberian Peninsula is considered. The behavior of different non-parametric standardized drought indices in drought detection is evaluated. A statistical approach based on run theory is employed, analyzing the main characteristics of drought propagation. The propagation from meteorological to agricultural drought events is found to develop in about 1-2 months. The duration of agricultural drought appears shorter than that of meteorological drought, but the onset is delayed. The propagation probability increases with the severity of the originating meteorological drought. A new combined agricultural drought index is developed to be a useful tool for balancing the characteristics of other adopted indices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the process followed in order to make some of the public meterological data from the Agencia Estatal de Meteorología (AEMET, Spanish Meteorological Office) available as Linked Data. The method followed has been already used to publish geographical, statistical, and leisure data. The data selected for publication are generated every ten minutes by the 250 automatic stations that belong to AEMET and that are deployed across Spain. These data are available as spreadsheets in the AEMET data catalog, and contain more than twenty types of measurements per station. Spreadsheets are retrieved from the website, processed with Python scripts, transformed to RDF according to an ontology network about meteorology that reuses the W3C SSN Ontology, published in a triple store and visualized in maps with Map4rdf.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the period 1996-2000, forty-three heavy rainfall events have been detected in the Internal Basins of Catalonia (Northeastern of Spain). Most of these events caused floods and serious damage. This high number leads to the need for a methodology to classify them, on the basis of their surface rainfall distribution, their internal organization and their physical features. The aim of this paper is to show a methodology to analyze systematically the convective structures responsible of those heavy rainfall events on the basis of the information supplied by the meteorological radar. The proposed methodology is as follows. Firstly, the rainfall intensity and the surface rainfall pattern are analyzed on the basis of the raingauge data. Secondly, the convective structures at the lowest level are identified and characterized by using a 2-D algorithm, and the convective cells are identified by using a 3-D procedure that looks for the reflectivity cores in every radar volume. Thirdly, the convective cells (3-D) are associated with the 2-D structures (convective rainfall areas). This methodology has been applied to the 43 heavy rainfall events using the meteorological radar located near Barcelona and the SAIH automatic raingauge network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An automatic system was designed to concurrently measure stage and discharge for the purpose of developing stage-discharge ratings and high flow hydrographs on small streams. Stage, or gage height, is recorded by an analog-to-digital recorder and discharge is determined by the constant-rate tracer-dilution method. The system measures flow above a base stage set by the user. To test the effectiveness of the system and its components, eight systems, with a variety of equipment, were installed at crest-stage gaging stations across Iowa. A fluorescent dye, rhodamine-WT, was used as the tracer. Tracer-dilution discharge measurements were made during 14 flow periods at six stations from 1986 through 1988 water years. Ratings were developed at three stations with the aid of these measurements. A loop rating was identified at one station during rapidly-changing flow conditions. Incomplete mixing and dye loss to sediment apparently were problems at some stations. Stage hydrographs were recorded for 38 flows at seven stations. Limited data on background fluorescence during high flows were also obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to study the tropospheric ozone concentrations and daily peak cycles in the Lisbon MetropolitanArea (LMA) during the summer season (June, July and August, JJA) covering the 4-yr study period 2002-2005. Theresults show that all the stations have the same pattern: a minimum in the early morning followed by an increase at 1000UTC reaching to a peak at 1300-1400 UTC, dropped again to minimum values 1800 UTC but with different concentrationsdue to regional and local wind circulations and complex dynamic interactions. We identified in Lisbon city the ozone “weekendeffect”. Finally, we studied an episode of very high levels of tropospheric ozone and related daily ozone concentrationswith some meteorological variables.