956 resultados para Auditory Alarms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Action representations can interact with object recognition processes. For example, so-called mirror neurons respond both when performing an action and when seeing or hearing such actions. Investigations of auditory object processing have largely focused on categorical discrimination, which begins within the initial 100 ms post-stimulus onset and subsequently engages distinct cortical networks. Whether action representations themselves contribute to auditory object recognition and the precise kinds of actions recruiting the auditory-visual mirror neuron system remain poorly understood. We applied electrical neuroimaging analyses to auditory evoked potentials (AEPs) in response to sounds of man-made objects that were further subdivided between sounds conveying a socio-functional context and typically cuing a responsive action by the listener (e.g. a ringing telephone) and those that are not linked to such a context and do not typically elicit responsive actions (e.g. notes on a piano). This distinction was validated psychophysically by a separate cohort of listeners. Beginning approximately 300 ms, responses to such context-related sounds significantly differed from context-free sounds both in the strength and topography of the electric field. This latency is >200 ms subsequent to general categorical discrimination. Additionally, such topographic differences indicate that sounds of different action sub-types engage distinct configurations of intracranial generators. Statistical analysis of source estimations identified differential activity within premotor and inferior (pre)frontal regions (Brodmann's areas (BA) 6, BA8, and BA45/46/47) in response to sounds of actions typically cuing a responsive action. We discuss our results in terms of a spatio-temporal model of auditory object processing and the interplay between semantic and action representations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mismatch negativity (MMN) overlaps with other auditory event-related potential (ERP) components. We examined the ERPs of 50 9- to 11-year-old children for vowels /i/, /y/ and equivalent complex tones. The goal was to separate MMN from obligatory ERP components using principal component analysis and equal probability control condition. In addition to the contrast of the deviant minus standard response, we employed the contrast of the deviant minus control response, to see whether the obligatory processing contributes to MMN in children. When looking for differences in speech deviant minus standard contrast, MMN starts around 112 ms. However, when both contrasts are examined, MMN emerges for speech at 160 ms whereas for nonspeech MMN is observed at 112 ms regardless of contrast. We argue that this discriminative response to speech stimuli at 112 ms is obligatory in nature rather than reflecting change detection processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: An auditory perceptual learning paradigm was used to investigate whether implicit memories are formed during general anesthesia. METHODS: Eighty-seven patients who had an American Society of Anesthesiologists physical status of I-III and were scheduled to undergo an elective surgery with general anesthesia were randomly assigned to one of two groups. One group received auditory stimulation during surgery, whereas the other did not. The auditory stimulation consisted of pure tones presented via headphones. The Bispectral Index level was maintained between 40 and 50 during surgery. To assess learning, patients performed an auditory frequency discrimination task after surgery, and comparisons were made between the groups. General anesthesia was induced with thiopental and maintained with a mixture of fentanyl and sevoflurane. RESULTS: There was no difference in the amount of learning between the two groups (mean +/- SD improvement: stimulated patients 9.2 +/- 11.3 Hz, controls 9.4 +/- 14.1 Hz). There was also no difference in initial thresholds (mean +/- SD initial thresholds: stimulated patients 31.1 +/- 33.4 Hz, controls 28.4 +/- 34.2 Hz). These results suggest that perceptual learning was not induced during anesthesia. No correlation between the bispectral index and the initial level of performance was found (Pearson r = -0.09, P = 0.59). CONCLUSION: Perceptual learning was not induced by repetitive auditory stimulation during anesthesia. This result may indicate that perceptual learning requires top-down processing, which is suppressed by the anesthetic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research has provided inconsistent results regarding the spatial modulation of auditory-somatosensory interactions. The present study reports three experiments designed to investigate the nature of these interactions in the space close to the head. Human participants made speeded detection responses to unimodal auditory, somatosensory, or simultaneous auditory-somatosensory stimuli. In Experiment 1, electrocutaneous stimuli were presented to either earlobe, while auditory stimuli were presented from the same versus opposite sides, and from one of two distances (20 vs. 70cm) from the participant's head. The results demonstrated a spatial modulation of auditory-somatosensory interactions when auditory stimuli were presented from close to the head. In Experiment 2, electrocutaneous stimuli were delivered to the hands, which were placed either close to or far from the head, while the auditory stimuli were again presented at one of two distances. The results revealed that the spatial modulation observed in Experiment 1 was specific to the particular body part stimulated (head) rather than to the region of space (i.e. around the head) where the stimuli were presented. The results of Experiment 3 demonstrate that sounds that contain high-frequency components are particularly effective in eliciting this auditory-somatosensory spatial effect. Taken together, these findings help to resolve inconsistencies in the previous literature and suggest that auditory-somatosensory multisensory integration is modulated by the stimulated body surface and acoustic spectra of the stimuli presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cocktail parties, busy streets, and other noisy environments pose a difficult challenge to the auditory system: how to focus attention on selected sounds while ignoring others? Neurons of primary auditory cortex, many of which are sharply tuned to sound frequency, could help solve this problem by filtering selected sound information based on frequency-content. To investigate whether this occurs, we used high-resolution fMRI at 7 tesla to map the fine-scale frequency-tuning (1.5 mm isotropic resolution) of primary auditory areas A1 and R in six human participants. Then, in a selective attention experiment, participants heard low (250 Hz)- and high (4000 Hz)-frequency streams of tones presented at the same time (dual-stream) and were instructed to focus attention onto one stream versus the other, switching back and forth every 30 s. Attention to low-frequency tones enhanced neural responses within low-frequency-tuned voxels relative to high, and when attention switched the pattern quickly reversed. Thus, like a radio, human primary auditory cortex is able to tune into attended frequency channels and can switch channels on demand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rats, like other crepuscular animals, have excellent auditory capacities and they discriminate well between different sounds [Heffner HE, Heffner RS, Hearing in two cricetid rodents: wood rats (Neotoma floridana) and grasshopper mouse (Onychomys leucogaster). J Comp Psychol 1985;99(3):275-88]. However, most experimental literature concerning spatial orientation almost exclusively emphasizes the use of visual landmarks [Cressant A, Muller RU, Poucet B. Failure of centrally placed objects to control the firing fields of hippocampal place cells. J Neurosci 1997;17(7):2531-42; and Goodridge JP, Taube JS. Preferential use of the landmark navigational system by head direction cells in rats. Behav Neurosci 1995;109(1):49-61]. To address the important issue of whether rats are able to achieve a place navigation task relative to auditory beacons, we designed a place learning task in the water maze. We controlled cue availability by conducting the experiment in total darkness. Three auditory cues did not allow place navigation whereas three visual cues in the same positions did support place navigation. One auditory beacon directly associated with the goal location did not support taxon navigation (a beacon strategy allowing the animal to find the goal just by swimming toward the cue). Replacing the auditory beacons by one single visual beacon did support taxon navigation. A multimodal configuration of two auditory cues and one visual cue allowed correct place navigation. The deletion of the two auditory or of the one visual cue did disrupt the spatial performance. Thus rats can combine information from different sensory modalities to achieve a place navigation task. In particular, auditory cues support place navigation when associated with a visual one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: This study measures the impact of beliefs about auditory hallucinations on social functioning. SAMPLING AND METHODS: Twenty-nine subjects who met the ICD-10 criteria for schizophrenia or a schizo-affective disorder were included. Beliefs about voices and coping responses as measured by the Beliefs about Voices Questionnaire were compared with social functioning as assessed with the Life Skills Profile (LSP). RESULTS: The belief that voices are benevolent was associated with poor communication. Engagement with voices was correlated with the non-turbulence and the compliance factors of the LSP. Patients who held the belief that their voices were benevolent functioned significantly more poorly on the communication factor of the LSP than patients who interpreted their voices as malevolent. DISCUSSION: The results indicate that a positive relationship with voices may affect social functioning. However, the size of the sample is small and patients with benevolent voices are overrepresented. Nonetheless, these results have implications for the use of cognitive therapy for psychotic symptoms

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In newborn kittens, cortical auditory areas (including AI and AII) send transitory projections to ipsi- and contralateral visual areas 17 and 18. These projections originate mainly from neurons in supragranular layers but also from a few in infragranular layers (Innocenti and Clarke: Dev. Brain Res. 14:143-148, '84; Clarke and Innocenti: J. Comp. Neurol. 251:1-22, '86). The postnatal development of these projections was studied with injections of anterograde tracers (wheat germ agglutinin-horseradish peroxidase [WGA-HRP]) in AI and AII and of retrograde tracers (WGA-HRP, fast blue, diamidino yellow, rhodamine-labeled latex beads) in areas 17 and 18. It was found that the projections are nearly completely eliminated in development, this, by the end of the first postnatal month. Until then, most of the transitory axons seem to remain confined to the white matter and the depth of layer VI; a few enter it further but do not appear to form terminal arbors. As for other transitory cortical projections the disappearance of the transitory axons seems not to involve death of their neurons of origin. In kittens older than 1 month and in normal adult cats, retrograde tracer injections restricted to, or including, areas 17 and 18 label only a few neurons in areas AI and AII. Unlike the situation in the kitten, nearly all of these are restricted to layers V and VI. A similar distribution of neurons projecting from auditory to visual areas is found in adult cats bilaterally enucleated at birth, which suggests that the postnatal elimination of the auditory-to-visual projection is independent of visual experience and more generally of information coming from the retina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent multisensory research has emphasized the occurrence of early, low-level interactions in humans. As such, it is proving increasingly necessary to also consider the kinds of information likely extracted from the unisensory signals that are available at the time and location of these interaction effects. This review addresses current evidence regarding how the spatio-temporal brain dynamics of auditory information processing likely curtails the information content of multisensory interactions observable in humans at a given latency and within a given brain region. First, we consider the time course of signal propagation as a limitation on when auditory information (of any kind) can impact the responsiveness of a given brain region. Next, we overview the dual pathway model for the treatment of auditory spatial and object information ranging from rudimentary to complex environmental stimuli. These dual pathways are considered an intrinsic feature of auditory information processing, which are not only partially distinct in their associated brain networks, but also (and perhaps more importantly) manifest only after several tens of milliseconds of cortical signal processing. This architecture of auditory functioning would thus pose a constraint on when and in which brain regions specific spatial and object information are available for multisensory interactions. We then separately consider evidence regarding mechanisms and dynamics of spatial and object processing with a particular emphasis on when discriminations along either dimension are likely performed by specific brain regions. We conclude by discussing open issues and directions for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence from neuropsychological and activation studies (Clarke et al., 2oo0, Maeder et al., 2000) suggests that sound recognitionand localisation are processed by two anatomically and functionally distinct cortical networks. We report here on a case of a patientthat had an interruption of auditory information and we show: i) the effects of this interruption on cortical auditory processing; ii)the effect of the workload on activation pattern.A 36 year old man suffered from a small left mesencephalic haemotrhage, due to cavernous angioma; the let% inferior colliculuswas resected in the surgical approach of the vascular malformation. In the acute stage, the patient complained of auditoryhallucinations and of auditory loss in right ear, while tonal audiometry was normal. At 12 months, auditory recognition, auditorylocalisation (assessed by lTD and IID cues) and auditory motion perception were normal (Clarke et al., 2000), while verbal dichoticlistening was deficient on the right side.Sound recognition and sound localisation activation patterns were investigated with fMRI, using a passive and an activeparadigm. In normal subjects, distinct cortical networks were involved in sound recognition and localisation, both in passive andactive paradigm (Maeder et al., 2OOOa, 2000b).Passive listening of environmental and spatial stimuli as compared to rest strongly activated right auditory cortex, but failed toactivate left primary auditory cortex. The specialised networks for sound recognition and localisation could not be visual&d onthe right and only minimally on the left convexity. A very different activation pattern was obtained in the active condition wherea motor response was required. Workload not only increased the activation of the right auditory cortex, but also allowed theactivation of the left primary auditory cortex. The specialised networks for sound recognition and localisation were almostcompletely present in both hemispheres.These results show that increasing the workload can i) help to recruit cortical region in the auditory deafferented hemisphere;and ii) lead to processing auditory information within specific cortical networks.References:Clarke et al. (2000). Neuropsychologia 38: 797-807.Mae.der et al. (2OOOa), Neuroimage 11: S52.Maeder et al. (2OOOb), Neuroimage 11: S33

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial hearing refers to a set of abilities enabling us to determine the location of sound sources, redirect our attention toward relevant acoustic events, and recognize separate sound sources in noisy environments. Determining the location of sound sources plays a key role in the way in which humans perceive and interact with their environment. Deficits in sound localization abilities are observed after lesions to the neural tissues supporting these functions and can result in serious handicaps in everyday life. These deficits can, however, be remediated (at least to a certain degree) by the surprising capacity of reorganization that the human brain possesses following damage and/or learning, namely, the brain plasticity. In this thesis, our aim was to investigate the functional organization of auditory spatial functions and the learning-induced plasticity of these functions. Overall, we describe the results of three studies. The first study entitled "The role of the right parietal cortex in sound localization: A chronometric single pulse transcranial magnetic stimulation study" (At et al., 2011), study A, investigated the role of the right parietal cortex in spatial functions and its chronometry (i.e. the critical time window of its contribution to sound localizations). We concentrated on the behavioral changes produced by the temporarily inactivation of the parietal cortex with transcranial magnetic stimulation (TMS). We found that the integrity of the right parietal cortex is crucial for localizing sounds in the space and determined a critical time window of its involvement, suggesting a right parietal dominance for auditory spatial discrimination in both hemispaces. In "Distributed coding of the auditory space in man: evidence from training-induced plasticity" (At et al., 2013a), study B, we investigated the neurophysiological correlates and changes of the different sub-parties of the right auditory hemispace induced by a multi-day auditory spatial training in healthy subjects with electroencephalography (EEG). We report a distributed coding for sound locations over numerous auditory regions, particular auditory areas code specifically for precise parts of the auditory space, and this specificity for a distinct region is enhanced with training. In the third study "Training-induced changes in auditory spatial mismatch negativity" (At et al., 2013b), study C, we investigated the pre-attentive neurophysiological changes induced with a training over 4 days in healthy subjects with a passive mismatch negativity (MMN) paradigm. We showed that training changed the mechanisms for the relative representation of sound positions and not the specific lateralization themselves and that it changed the coding in right parahippocampal regions. - L'audition spatiale désigne notre capacité à localiser des sources sonores dans l'espace, de diriger notre attention vers les événements acoustiques pertinents et de reconnaître des sources sonores appartenant à des objets distincts dans un environnement bruyant. La localisation des sources sonores joue un rôle important dans la façon dont les humains perçoivent et interagissent avec leur environnement. Des déficits dans la localisation de sons sont souvent observés quand les réseaux neuronaux impliqués dans cette fonction sont endommagés. Ces déficits peuvent handicaper sévèrement les patients dans leur vie de tous les jours. Cependant, ces déficits peuvent (au moins à un certain degré) être réhabilités grâce à la plasticité cérébrale, la capacité du cerveau humain à se réorganiser après des lésions ou un apprentissage. L'objectif de cette thèse était d'étudier l'organisation fonctionnelle de l'audition spatiale et la plasticité induite par l'apprentissage de ces fonctions. Dans la première étude intitulé « The role of the right parietal cortex in sound localization : A chronometric single pulse study » (At et al., 2011), étude A, nous avons examiné le rôle du cortex pariétal droit dans l'audition spatiale et sa chronométrie, c'est-à- dire le moment critique de son intervention dans la localisation de sons. Nous nous sommes concentrés sur les changements comportementaux induits par l'inactivation temporaire du cortex pariétal droit par le biais de la Stimulation Transcrânienne Magnétique (TMS). Nous avons démontré que l'intégrité du cortex pariétal droit est cruciale pour localiser des sons dans l'espace. Nous avons aussi défini le moment critique de l'intervention de cette structure. Dans « Distributed coding of the auditory space : evidence from training-induced plasticity » (At et al., 2013a), étude B, nous avons examiné la plasticité cérébrale induite par un entraînement des capacités de discrimination auditive spatiale de plusieurs jours. Nous avons montré que le codage des positions spatiales est distribué dans de nombreuses régions auditives, que des aires auditives spécifiques codent pour des parties données de l'espace et que cette spécificité pour des régions distinctes est augmentée par l'entraînement. Dans « Training-induced changes in auditory spatial mismatch negativity » (At et al., 2013b), étude C, nous avons examiné les changements neurophysiologiques pré- attentionnels induits par un entraînement de quatre jours. Nous avons montré que l'entraînement modifie la représentation des positions spatiales entraînées et non-entrainées, et que le codage de ces positions est modifié dans des régions parahippocampales.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aim of the study: Formation of implicit memory during general anaesthesia is still debated. Perceptual learning is the ability to learn to perceive. In this study, an auditory perceptual learning paradigm, using frequency discrimination, was performed to investigate the implicit memory. It was hypothesized that auditory stimulation would successfully induce perceptual learning. Thus, initial thresholds of the frequency discrimination postoperative task should be lower for the stimulated group (group S) compared to the control group (group C). Material and method: Eighty-seven patients ASA I-III undergoing visceral and orthopaedic surgery during general anaesthesia lasting more than 60 minutes were recruited. The anaesthesia procedure was standardized (BISR monitoring included). Group S received auditory stimulation (2000 pure tones applied for 45 minutes) during the surgery. Twenty-four hours after the operation, both groups performed ten blocks of the frequency discrimination task. Mean of the thresholds for the first three blocks (T1) were compared between groups. Results: Mean age and BIS value of group S and group C are respectively 40 } 11 vs 42 } 11 years (p = 0,49) and 42 } 6 vs 41 } 8 (p = 0.87). T1 is respectively 31 } 33 vs 28 } 34 (p = 0.72) in group S and C. Conclusion: In our study, no implicit memory during general anaesthesia was demonstrated. This may be explained by a modulation of the auditory evoked potentials caused by the anaesthesia, or by an insufficient longer time of repetitive stimulation to induce perceptual learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A transitory projection from primary and secondary auditory areas to the contralateral and ipsilateral areas 17 and 18 exists in newborn kittens. Distinct neuronal populations project to ipsilateral areas 17-18, contralateral areas 17-18 and contralateral auditory cortex; they are at different depth in layers II, III, and IV. By postnatal day 38 the auditory to visual projections have been lost, apparently by elimination of axons rather than by neuronal death. While it was previously reported that the elimination of transitory axons is responsible for focusing the origin of callosal connections to restricted portions of sensory areas it now appears that similar events play a more general role in the organization of cortico-cortical networks. Indeed, the elimination of juvenile projections is largely responsible for determining which areas will be connected in the adult.