989 resultados para Atlas linguarum fennicarum
Resumo:
This paper describes the trigger and offline reconstruction, identification and energy calibration algorithms for hadronic decays of tau leptons employed for the data collected from pp collisions in 2012 with the ATLAS detector at the LHC center-of-mass energy s√ = 8 TeV. The performance of these algorithms is measured in most cases with Z decays to tau leptons using the full 2012 dataset, corresponding to an integrated luminosity of 20.3 fb−1. An uncertainty on the offline reconstructed tau energy scale of 2% to 4%, depending on transverse energy and pseudorapidity, is achieved using two independent methods. The offline tau identification efficiency is measured with a precision of 2.5% for hadronically decaying tau leptons with one associated track, and of 4% for the case of three associated tracks, inclusive in pseudorapidity and for a visible transverse energy greater than 20 GeV. For hadronic tau lepton decays selected by offline algorithms, the tau trigger identification efficiency is measured with a precision of 2% to 8%, depending on the transverse energy. The performance of the tau algorithms, both offline and at the trigger level, is found to be stable with respect to the number of concurrent proton--proton interactions and has supported a variety of physics results using hadronically decaying tau leptons at ATLAS.
Resumo:
Studies of the spin and parity quantum numbers of the Higgs boson in the WW∗→eνμν final state are presented, based on proton--proton collision data collected by the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb−1 at a centre-of-mass energy of s√=8 TeV. The Standard Model spin-parity JCP=0++ hypothesis is compared with alternative hypotheses for both spin and CP. The case where the observed resonance is a mixture of the Standard-Model-like Higgs boson and CP-even (JCP=0++) or CP-odd (JCP=0+−) Higgs boson in scenarios beyond the Standard Model is also studied. The data are found to be consistent with the Standard Model prediction and limits are placed on alternative spin and CP hypotheses, including CP mixing in different scenarios.
Resumo:
This Letter presents measurements of correlated production of nearby jets in Pb+Pb collisions at sNN−−−√=2.76 TeV using the ATLAS detector at the Large Hadron Collider. The measurement was performed using 0.14 nb−1 of data recorded in 2011. The production of correlated jet pairs was quantified using the rate, RΔR, of ``neighbouring'' jets that accompany ``test'' jets within a given range of angular distance, ΔR, in the pseudorapidity--azimuthal angle plane. The jets were measured in the ATLAS calorimeter and were reconstructed using the anti-kt algorithm with radius parameters d=0.2, 0.3, and 0.4. RΔR was measured in different Pb+Pb collision centrality bins, characterized by the total transverse energy measured in the forward calorimeters. A centrality dependence of RΔR is observed for all three jet radii with RΔR found to be lower in central collisions than in peripheral collisions. The ratios formed by the RΔR values in different centrality bins and the values in the 40--80 % centrality bin are presented.
Resumo:
The paper presents studies of Bose--Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range pT> 100 MeV and |η|< 2.5 in proton--proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 μb−1, 190 μb−1 and 12.4 nb−1 for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.
Resumo:
The normalized differential cross section for top-quark pair production in association with at least one jet is studied as a function of the inverse of the invariant mass of the tt¯+1-jet system. This distribution can be used for a precise determination of the top-quark mass since gluon radiation depends on the mass of the quarks. The experimental analysis is based on proton--proton collision data collected by the ATLAS detector at the LHC with a centre-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.6 fb−1. The selected events were identified using the lepton+jets top-quark-pair decay channel, where lepton refers to either an electron or a muon. The observed distribution is compared to a theoretical prediction at next-to-leading-order accuracy in quantum chromodynamics using the pole-mass scheme. With this method, the measured value of the top-quark pole mass, mpolet, is: mpolet =173.7 ± 1.5 (stat.) ± 1.4 (syst.) +1.0−0.5 (theory) GeV. This result represents the most precise measurement of the top-quark pole mass to date.
Resumo:
A search is performed for narrow resonances decaying into WW, WZ, or ZZ boson pairs using 20.3 fb−1 of proton--proton collision data at a centre-of-mass energy of s√ = 8 TeV recorded with the ATLAS detector at the Large Hadron Collider. Diboson resonances with masses in the range from 1.3 to 3.0 TeV are sought after using the invariant mass distribution of dijets where both jets are tagged as a boson jet, compatible with a highly boosted W or Z boson decaying to quarks, using jet mass and substructure properties. The largest deviation from a smoothly falling background in the observed dijet invariant mass distribution occurs around 2 TeV in the WZ channel, with a global significance of 2.5 standard deviations. Exclusion limits at the 95% confidence level are set on the production cross section times branching ratio for the WZ final state of a new heavy gauge boson, W′, and for the WW and ZZ final states of Kaluza--Klein excitations of the graviton in a bulk Randall--Sundrum model, as a function of the resonance mass. W′ bosons with couplings predicted by the extended gauge model in the mass range from 1.3 to 1.5 TeV are excluded at 95% confidence level.
Resumo:
The ATLAS experiment at the LHC has measured the Higgs boson couplings and mass, and searched for invisible Higgs boson decays, using multiple production and decay channels with up to 4.7 fb−1 of pp collision data at √s=7 TeV and 20.3 fb−1 at √s=8 TeV. In the current study, the measured production and decay rates of the observed Higgs boson in the γγ, ZZ, W W , Zγ, bb, τ τ , and μμ decay channels, along with results from the associated production of a Higgs boson with a top-quark pair, are used to probe the scaling of the couplings with mass. Limits are set on parameters in extensions of the Standard Model including a composite Higgs boson, an additional electroweak singlet, and two-Higgs-doublet models. Together with the measured mass of the scalar Higgs boson in the γγ and ZZ decay modes, a lower limit is set on the pseudoscalar Higgs boson mass of m A > 370 GeV in the “hMSSM” simplified Minimal Supersymmetric Standard Model. Results from direct searches for heavy Higgs bosons are also interpreted in the hMSSM. Direct searches for invisible Higgs boson decays in the vector-boson fusion and associated production of a Higgs boson with W/Z (Z → ℓℓ, W/Z → jj) modes are statistically combined to set an upper limit on the Higgs boson invisible branching ratio of 0.25. The use of the measured visible decay rates in a more general coupling fit improves the upper limit to 0.23, constraining a Higgs portal model of dark matter.
Resumo:
A search for flavour-changing neutral current decays of a top quark to an uptype quark (q = u, c) and the Standard Model Higgs boson, where the Higgs boson decays to bb¯¯, is presented. The analysis searches for top quark pair events in which one top quark decays to Wb, with the W boson decaying leptonically, and the other top quark decays to Hq. The search is based on pp collisions at s√=8 TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider and uses an integrated luminosity of 20.3 fb−1. Data are analysed in the lepton-plus-jets final state, characterised by an isolated electron or muon and at least four jets. The search exploits the high multiplicity of b-quark jets characteristic of signal events, and employs a likelihood discriminant that uses the kinematic differences between the signal and the background, which is dominated by tt¯→WbWb decays. No significant excess of events above the background expectation is found, and observed (expected) 95% CL upper limits of 0.56% (0.42%) and 0.61% (0.64%) are derived for the t → Hc and t → Hu branching ratios respectively. The combination of this search with other ATLAS searches in the H → γγ and H → WW *, ττ decay modes significantly improves the sensitivity, yielding observed (expected) 95% CL upper limits on the t → Hc and t → Hu branching ratios of 0.46% (0.25%) and 0.45% (0.29%) respectively. The corresponding combined observed (expected) upper limits on the |λ tcH | and |λ tuH | couplings are 0.13 (0.10) and 0.13 (0.10) respectively. These are the most restrictive direct bounds on tqH interactions measured so far.
Resumo:
An analysis is presented of events containing jets including at least one b-tagged jet, sizeable missing transverse momentum, and at least two leptons including a pair of the same electric charge, with the scalar sum of the jet and lepton transverse momenta being large. A data sample with an integrated luminosity of 20.3 fb−1 of pp collisions at s√=8 TeV recorded by the ATLAS detector at the Large Hadron Collider is used. Standard Model processes rarely produce these final states, but there are several models of physics beyond the Standard Model that predict an enhanced rate of production of such events; the ones considered here are production of vector-like quarks, enhanced four-top-quark production, pair production of chiral b′-quarks, and production of two positively charged top quarks. Eleven signal regions are defined; subsets of these regions are combined when searching for each class of models. In the three signal regions primarily sensitive to positively charged top quark pair production, the data yield is consistent with the background expectation. There are more data events than expected from background in the set of eight signal regions defined for searching for vector-like quarks and chiral b′-quarks, but the significance of the discrepancy is less than two standard deviations. The discrepancy reaches 2.5 standard deviations in the set of five signal regions defined for searching for four-top-quark production. The results are used to set 95% CL limits on various models.
Resumo:
A summary of the constraints from the ATLAS experiment on R-parity-conserving supersymmetry is presented. Results from 22 separate ATLAS searches are considered, each based on analysis of up to 20.3 fb−1 of proton-proton collision data at centre-of-mass energies of s√=7 and 8 TeV at the Large Hadron Collider. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, in which the lightest supersymmetric particle is a neutralino, taking into account constraints from previous precision electroweak and flavour measurements as well as from dark matter related measurements. The results are presented in terms of constraints on supersymmetric particle masses and are compared to limits from simplified models. The impact of ATLAS searches on parameters such as the dark matter relic density, the couplings of the observed Higgs boson, and the degree of electroweak fine-tuning is also shown. Spectra for surviving supersymmetry model points with low fine-tunings are presented.
Resumo:
The production cross sections of top-quark pairs in association with massive vector bosons have been measured using data from pp collisions at s√=8 TeV. The dataset corresponds to an integrated luminosity of 20.3 fb−1 collected by the ATLAS detector in 2012 at the LHC. Final states with two, three or four leptons are considered. A fit to the data considering the tt¯W and tt¯Z processes simultaneously yields a significance of 5.0σ (4.2σ) over the background-only hypothesis for tt¯W (tt¯Z) production. The measured cross sections are σtt¯W=369+100−91 fb and σtt¯Z=176+58−52 fb. The background-only hypothesis with neither tt¯W nor tt¯Z production is excluded at 7.1σ. All measurements are consistent with next-to-leading-order calculations for the tt¯W and tt¯Z processes.
Resumo:
A search for new particles that decay into top quark pairs is reported. The search is performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb−1 of proton-proton collision data collected at a centre-of-mass energy of s√=8 TeV. The lepton-plus-jets final state is used, where the top pair decays to W+bW−b¯¯, with one W boson decaying leptonically and the other hadronically. The invariant mass spectrum of top quark pairs is examined for local excesses or deficits that are inconsistent with the Standard Model predictions. No evidence for a top quark pair resonance is found, and 95% confidence-level limits on the production rate are determined for massive states in benchmark models. The upper limits on the cross-section times branching ratio of a narrow Z′ boson decaying to top pairs range from 4.2 pb to 0.03 pb for resonance masses from 0.4 TeV to 3.0 TeV. A narrow leptophobic topcolour Z′ boson with mass below 1.8 TeV is excluded. Upper limits are set on the cross-section times branching ratio for a broad colour-octet resonance with Γ/m = 15% decaying to tt¯. These range from 4.8 pb to 0.03 pb for masses from 0.4 TeV to 3.0 TeV. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below 2.2 TeV.
Resumo:
A search for Higgs boson production in association with a W or Z boson, in the H→ W W ∗ decay channel, is performed with a data sample collected with the ATLAS detector at the LHC in proton-proton collisions at centre-of-mass energies s√=7 TeV and 8 TeV, corresponding to integrated luminosities of 4.5 fb−1 and 20.3 fb−1, respectively. The WH production mode is studied in two-lepton and three-lepton final states, while two- lepton and four-lepton final states are used to search for the ZH production mode. The observed significance, for the combined W H and ZH production, is 2.5 standard deviations while a significance of 0.9 standard deviations is expected in the Standard Model Higgs boson hypothesis. The ratio of the combined W H and ZH signal yield to the Standard Model expectation, μ V H , is found to be μ V H = 3.0 − 1.1 + 1.3 (stat.) − 0.7 + 1.0 (sys.) for the Higgs boson mass of 125.36 GeV. The W H and ZH production modes are also combined with the gluon fusion and vector boson fusion production modes studied in the H → W W ∗ → ℓνℓν decay channel, resulting in an overall observed significance of 6.5 standard deviations and μ ggF + VBF + VH = 1. 16 − 0.15 + 0.16 (stat.) − 0.15 + 0.18 (sys.). The results are interpreted in terms of scaling factors of the Higgs boson couplings to vector bosons (κ V ) and fermions (κ F ); the combined results are: |κ V | = 1.06 − 0.10 + 0.10 , |κ F | = 0. 85 − 0.20 + 0.26 .
Resumo:
A summary is presented of ATLAS searches for gluinos and first- and second-generation squarks in final states containing jets and missing transverse momentum, with or without leptons or b-jets, in the s√=8 TeV data set collected at the Large Hadron Collider in 2012. This paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as a new analysis. Since no significant excess of events over the Standard Model expectation is observed, the data are used to set limits in a variety of models. In all the considered simplified models that assume R-parity conservation, the limit on the gluino mass exceeds 1150 GeV at 95% confidence level, for an LSP mass smaller than 100 GeV. Furthermore, exclusion limits are set for left-handed squarks in a phenomenological MSSM model, a minimal Supergravity/Constrained MSSM model, R-parity-violation scenarios, a minimal gauge-mediated supersymmetry breaking model, a natural gauge mediation model, a non-universal Higgs mass model with gaugino mediation and a minimal model of universal extra dimensions.