931 resultados para Asymmetric Phillips Curve
Resumo:
The finite element method is used to analyse stresses and displacements in a monoblock cylinder open at one end only. The cylinder is internally pressurised. The analysis shows that the minimum pressure required to cause yield in the cylinder decreases rapidly with increasing cylinder height until the height is about the same as the outer radius of the cylinder, beyond which the decrease is marginal. Introduction of a fillet at the internal corner enhances the design pressure substantially while a fillet at the outer corner affects this pressure only marginally.
Resumo:
The atomic hydrogen gas (H I) disk in the outer region (beyond similar to 10 kpc from the center) of Milky Way can provide valuable information about the structure of the dark matter halo. The recent three-dimensional thickness map of the outer H I disk from the all sky 21 cm line Leiden/Argentine/Bonn survey, gives us a unique opportunity to investigate the structure of the dark matter halo of Milky Way in great detail. A striking feature of this new survey is the north-south (N-S) asymmetry in the thickness map of the atomic hydrogen gas. Assuming vertical hydrostatic equilibrium under the total potential of the Galaxy, we derive the model thickness map of the H I gas. We show that simple axisymmetric halo models, such as softened isothermal halo (producing a flat rotation curve with V-c similar to 220 km s(-1)) or any halo with density falling faster than the isothermal one, are not able to explain the observed radial variation of the gas thickness. We also show that such axisymmetric halos along with different H I velocity dispersion in the two halves, cannot explain the observed asymmetry in the thickness map. Amongst the nonaxisymmetric models, it is shown that a purely lopsided (m = 1, first harmonic) dark matter halo with reasonable H I velocity dispersion fails to explain the N-S asymmetry satisfactorily. However, we show that by superposing a second harmonic (m = 2) out of phase onto a purely lopsided halo, e. g., our best fit and more acceptable model A (with parameters epsilon(1)(h) = 0.2, epsilon(2)(h) = 0.18, and sigma(H I) = 8.5 km s(-1)) can provide an excellent fit to the observation and reproduce the N-S asymmetry naturally. The emerging picture of the asymmetric dark matter halo is supported by the. cold dark matter halos formed in the cosmological N-body simulation.
Resumo:
In this paper we consider the third-moment structure of a class of time series models. It is often argued that the marginal distribution of financial time series such as returns is skewed. Therefore it is of importance to know what properties a model should possess if it is to accommodate unconditional skewness. We consider modeling the unconditional mean and variance using models that respond nonlinearly or asymmetrically to shocks. We investigate the implications of these models on the third-moment structure of the marginal distribution as well as conditions under which the unconditional distribution exhibits skewness and nonzero third-order autocovariance structure. In this respect, an asymmetric or nonlinear specification of the conditional mean is found to be of greater importance than the properties of the conditional variance. Several examples are discussed and, whenever possible, explicit analytical expressions provided for all third-order moments and cross-moments. Finally, we introduce a new tool, the shock impact curve, for investigating the impact of shocks on the conditional mean squared error of return series.
Resumo:
The heat and mass transfer for unsteady laminar compressible boundary-layer flow, which is asymmetric with respect to a 3-dimensional stagnation point (i.e. for a jet incident at an angle on the body), have been studied. It is assumed that the free-stream velocity, wall temperature, and surface mass transfer vary arbitrarily with time and also that the gas has variable properties. The solution in the neighbourhood of the stagnation point has been obtained by series expansion in the longitudinal distance. The resulting partial differential equations have been solved numerically using an implicit finite-difference scheme. The results show that, in contrast with the symmetric flow, the maximum heat transfer does not occur at the stagnation point. The skin-friction and heat-transfer components due to asymmetric flow are only weakly affected by the mass transfer as compared to those components associated with symmetric flow. The variation of the wall temperature with time has a strong effect on the heat transfer component associated with the symmetric part of the flow. The skin friction and heat transfer are strongly affected by the variation of the density-viscosity product across the boundary layer. The skin friction responds more to the fluctuations of the free stream oscillating velocities than the heat transfer. The results have been compared with the available results and they are found to be in excellent agreement.
Resumo:
The relationship between the parameters in a description based on a mesoscale free energy functional for the concentration field and the macroscopic properties, such as the bending and compression moduli and the permeation constant, are examined for an asymmetric lamellar phase where the mass fractions of the hydrophobic and hydrophilic parts are not equal. The difference in the mass fractions is incorporated using a cubic term in the free energy functional, in addition to the usual quadratic and quartic terms in the Landau–Ginsburg formulation. The relationship between the coefficient of the cubic term and the difference in the mass fractions of the hydrophilic and hydrophobic parts is obtained. For a lamellar phase, it is important to ensure that the surface tension is zero due to symmetry considerations. The relationship between the parameters in the free energy functional for zero surface tension is derived. When the interface between the hydrophilic and hydrophobic parts is diffuse, it is found that the bending and compression moduli, scaled by the parameters in the free energy functional, do increase as the asymmetry in the bilayer increases. When the interface between the hydrophilic and hydrophobic parts is sharp, the scaled bending and compression moduli show no dependence on the asymmetry in the bilayer. The ratio of the permeation constant in between the water and bilayer in a molecular description and the Onsager coefficient in the mesoscale description is O(1) for both sharp and diffuse interfaces and it increases as the difference in the mass fractions is increased.
Resumo:
Species distribution modelling (SDM) typically analyses species’ presence together with some form of absence information. Ideally absences comprise observations or are inferred from comprehensive sampling. When such information is not available, then pseudo-absences are often generated from the background locations within the study region of interest containing the presences, or else absence is implied through the comparison of presences to the whole study region, e.g. as is the case in Maximum Entropy (MaxEnt) or Poisson point process modelling. However, the choice of which absence information to include can be both challenging and highly influential on SDM predictions (e.g. Oksanen and Minchin, 2002). In practice, the use of pseudo- or implied absences often leads to an imbalance where absences far outnumber presences. This leaves analysis highly susceptible to ‘naughty-noughts’: absences that occur beyond the envelope of the species, which can exert strong influence on the model and its predictions (Austin and Meyers, 1996). Also known as ‘excess zeros’, naughty noughts can be estimated via an overall proportion in simple hurdle or mixture models (Martin et al., 2005). However, absences, especially those that occur beyond the species envelope, can often be more diverse than presences. Here we consider an extension to excess zero models. The two-staged approach first exploits the compartmentalisation provided by classification trees (CTs) (as in O’Leary, 2008) to identify multiple sources of naughty noughts and simultaneously delineate several species envelopes. Then SDMs can be fit separately within each envelope, and for this stage, we examine both CTs (as in Falk et al., 2014) and the popular MaxEnt (Elith et al., 2006). We introduce a wider range of model performance measures to improve treatment of naughty noughts in SDM. We retain an overall measure of model performance, the area under the curve (AUC) of the Receiver-Operating Curve (ROC), but focus on its constituent measures of false negative rate (FNR) and false positive rate (FPR), and how these relate to the threshold in the predicted probability of presence that delimits predicted presence from absence. We also propose error rates more relevant to users of predictions: false omission rate (FOR), the chance that a predicted absence corresponds to (and hence wastes) an observed presence, and the false discovery rate (FDR), reflecting those predicted (or potential) presences that correspond to absence. A high FDR may be desirable since it could help target future search efforts, whereas zero or low FOR is desirable since it indicates none of the (often valuable) presences have been ignored in the SDM. For illustration, we chose Bradypus variegatus, a species that has previously been published as an exemplar species for MaxEnt, proposed by Phillips et al. (2006). We used CTs to increasingly refine the species envelope, starting with the whole study region (E0), eliminating more and more potential naughty noughts (E1–E3). When combined with an SDM fit within the species envelope, the best CT SDM had similar AUC and FPR to the best MaxEnt SDM, but otherwise performed better. The FNR and FOR were greatly reduced, suggesting that CTs handle absences better. Interestingly, MaxEnt predictions showed low discriminatory performance, with the most common predicted probability of presence being in the same range (0.00-0.20) for both true absences and presences. In summary, this example shows that SDMs can be improved by introducing an initial hurdle to identify naughty noughts and partition the envelope before applying SDMs. This improvement was barely detectable via AUC and FPR yet visible in FOR, FNR, and the comparison of predicted probability of presence distribution for pres/absence.
Resumo:
A new test for pathogenic Leptospira isolates, based on RAPD-PCR and high-resolution melt (HRM) analysis (which measures the melting temperature of amplicons in real time, using a fluorescent DNA-binding dye), has recently been developed. A characteristic profile of the amplicons can be used to define serovars or detect genotypes. Ten serovars, of leptospires from the species Leptospira interrogans (serovars Australis, Robinsoni, Hardjo, Pomona, Zanoni, Copenhageni and Szwajizak), L. borgpetersenii (serovar Arborea), L. kirschneri (serovar Cynopteri) and L. weilii (serovar Celledoni), were typed against 13 previously published RAPD primers, using a real-time cycler (the Corbett Life Science RotorGene 6000) and the optimised reagents from a commercial kit (Quantace SensiMix). RAPD-HRM at specific temperatures generated defining amplicon melt profiles for each of the tested serovars. These profiles were evaluated as difference-curve graphs generated using the RotorGene software package, with a cut-off of at least 8 'U' (plus or minus). The results demonstrated that RAPD-HRM can be used to measure serovar diversity and establish identity, with a high degree of stability. The characterisation of Leptospira serotypes using a DNA-based methodology is now possible. As an objective and relatively inexpensive and rapid method of serovar identification, at least for cultured isolates, RAPD-HRM assays show convincing potentia.
Resumo:
The octameric nucleosomal core-histone complex, (H2A)2-(H2B)2-(H3)2-(H4)2, isolated from rat liver, undergoes dissociation during gel exclusion chromatography as a result of dilution occurring in the columns. The elution pattern at pH 7.0 and 4°C showed a sharp leading peak containing all four histones but predominantly H3 and H4, and a trailing peak containing equal amounts of histones H2A and H2B. As column length was increased the area under the leading peak decreased and that under the trailing peak increased. In addition the relative positions of the two peaks varied with column length. From an analysis of the data on increase in elution volume of the leading peak in relation to column length an apparent molecular weight of 86 000 was calculated for the undissociated molecule. Its apparent molecular weight, histone composition and pattern of further dissociation in relation to column length suggest that this species is the hexamer, (H2A-H2B)-(H3)2-(H4)2. At pH 7.0 and 4°C the dissociation of the core complex appears to be as follows: (H2A)2-(H2B)2-(H3)2-(H4)2 → (H2A-H2B) + (H2A-H2B)-(H3)2-(H4)2 → 2(H2A-H2B) + (H3)2-(H4)2 This dissociation was accelerated by an increase in temperature or decrease in pH and was accompanied by marked conformational changes as judged by circular dichroism measurements.
Resumo:
High-resolution melt-curve analysis of random amplified polymorphic DNA (RAPD-HRM) is a novel technology that has emerged as a possible method to characterise leptospires to serovar level. RAPD-HRM has recently been used to measure intra-serovar convergence between strains of the same serovar as well as inter-serovar divergence between strains of different serovars. The results indicate that intra-serovar heterogeneity and inter-serovar homogeneity may limit the application of RAPD-HRM in routine diagnostics. They also indicate that genetic attenuation of aged, high-passage-number isolates could undermine the use of RAPD-HRM or any other molecular technology. Such genetic attenuation may account for a general decrease seen in titres of rabbit hyperimmune antibodies over time. Before RAPD-HRM can be further advanced as a routine diagnostic tool, strains more representative of the wild-type serovars of a given region need to be identified. Further, RAPD-HRM analysis of reference strains indicates that the routine renewal of reference collections, with new isolates, may be needed to maintain the genetic integrity of the collections.
Resumo:
We consider the asymmetric distributed source coding problem, where the recipient interactively communicates with N correlated informants to gather their data. We are mainly interested in minimizing the worst-case number of informant bits required for successful data-gathering at recipient, but we are also concerned with minimizing the number of rounds as well as the number of recipient bits. We provide two algorithms, one that optimally minimizes the number of informant bits and other that trades-off the number of informant bits to efficiently reduce the number of rounds and number of recipient bits.
Resumo:
The paper reports a detailed determination of the coexistence curve for the binary liquid system acetonitrile+cyclohexane, which have very closely matched densities and the data points get affected by gravity only for t=(Tc−T)/ Tc[approximately-equal-to]10−6. About 100 samples were measured over the range 10−6
Resumo:
Curves are a common feature of road infrastructure; however crashes on road curves are associated with increased risk of injury and fatality to vehicle occupants. Countermeasures require the identification of contributing factors. However, current approaches to identifying contributors use traditional statistical methods and have not used self-reported narrative claim to identify factors related to the driver, vehicle and environment in a systemic way. Text mining of 3434 road-curve crash claim records filed between 1 January 2003 and 31 December 2005 at a major insurer in Queensland, Australia, was undertaken to identify risk levels and contributing factors. Rough set analysis was used on insurance claim narratives to identify significant contributing factors to crashes and their associated severity. New contributing factors unique to curve crashes were identified (e.g., tree, phone, over-steer) in addition to those previously identified via traditional statistical analysis of Police and licensing authority records. Text mining is a novel methodology to improve knowledge related to risk and contributing factors to road-curve crash severity. Future road-curve crash countermeasures should more fully consider the interrelationships between environment, the road, the driver and the vehicle, and education campaigns in particular could highlight the increased risk of crash on road-curves.
Resumo:
Digital image