950 resultados para Associative Ring
Resumo:
The operation of a stand-alone, as opposed to grid connected generation system, using a slip-ring induction machine as the electrical generator, is considered. In contrast to an alternator, a slip-ring induction machine can run at variable speed and still deliver constant frequency power to loads. This feature enables optimization of the system when the prime mover is inherently variable speed in nature eg. wind turbines, as well as diesel driven systems, where there is scope for economizing on fuel consumption. Experimental results from a system driven by a 44 bhp diesel engine are presented. Operation at subsynchronous as well as super-synchronous speeds is examined. The measurement facilitates the understanding of the system as well as its design.
Resumo:
A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O-H center dot center dot center dot N hydrogen bonds with the triazole ring. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3743-3753, 2010.
Resumo:
We study charge pumping when a combination of static potentials and potentials oscillating with a time period T is applied in a one-dimensional system of noninteracting electrons. We consider both an infinite system using the Dirac equation in the continuum approximation and a periodic ring with a finite number of sites using the tight-binding model. The infinite system is taken to be coupled to reservoirs on the two sides which are at the same chemical potential and temperature. We consider a model in which oscillating potentials help the electrons to access a transmission resonance produced by the static potentials and show that nonadiabatic pumping violates the simple sin phi rule which is obeyed by adiabatic two-site pumping. For the ring, we do not introduce any reservoirs, and we present a method for calculating the current averaged over an infinite time using the time evolution operator U(T) assuming a purely Hamiltonian evolution. We analytically show that the averaged current is zero if the Hamiltonian is real and time-reversal invariant. Numerical studies indicate another interesting result, namely, that the integrated current is zero for any time dependence of the potential if it is applied to only one site. Finally we study the effects of pumping at two sites on a ring at resonant and nonresonant frequencies, and show that the pumped current has different dependences on the pumping amplitude in the two cases.
Resumo:
The thermal stability of ring-substituted arylammonium nitrates has been investigated using thermal methods of analysis. The decomposition temperature of meta- and para-substituted derivatives is found to be linearly related to the Hammett substituent constant σ. The activation energy for decomposition determined by isothermal gravimetry increases with the increasing basicity of the corresponding amine. The results suggest that the primary step in the decomposition process of these salts is proton abstraction by the anion from the arylammonium ion.
Resumo:
The thermal and explosive characteristics of ring-substituted arylammonium perchlorates have been studied by differential thermal analysis, explosion delay, and impact-sensitivity measurements. The decomposition and dissociation temperatures, as well as activiation energy for explosion, increase with increasing basicity of the corresponding arylamine. These parameters, when plotted against σ, the Hammett substituent constant, show a linear relationship in the case of meta- and para-substituted derivatives. The results indicate that a proton transfer from arylammonium ion to perchlorate ion is involved in the decompostion and also in the explosion process of these arylammonium perchlorates.
Resumo:
MNDO geometry optimizations were carried out on a series of symmetrically and unsymmetrically coupled strained ring hydrocarbons, R1-R1 and R1–R2 (R1=methyl, cyclopropyl, 1-bicyclo[1.1.0]butyl, 1-bicyclo[1.1.1]pentyl, prismyl, cubyl, 6-tricyclo [3.1.1.03,6]heptyl, and tetrahedryl groups; R2=methyl and cyclopropyl). The remarkable contraction of the C---C bond connecting the strained rings found experimentally in a few cases was reproduced correctly by the calculations. A linear correlation was found between the bond length shortening and the bond angle widening at the corresponding carbon atoms for all the structures considered. The reduction in C---C bond lengths due to various ring systems is additive. The additivity indicates that inter-ring interactions which effect the central bond length are absent and confirms the common electronic origin of bond contraction in these systems, viz. enhanced s-character in the exocyclic bonds of strained rings.
Resumo:
The hydrolysis reactions of organometallic ruthenium(II) piano-stool complexes of the type Ru-II(eta(6)-cymene)(L)Cl](0/+) (1-5, where L = kappa(1)- or kappa(2)-1,1-bis(diphenylphosphino)methane,1,1bis-(diphenylphosphino)methane oxide, kappa(1)-mercaptobenzothiazole) have been studied using density functional theory at the B3LYP level. In addition to considering a syn attack in an associative fashion, where the nucleophile approaches from the same side as the leaving group, we have explored alternative paths such as an anti attack in an associative manner, where the nucleophile attacks from the opposite side of the leaving group. During the anti attack, an intermediate is formed and there is a coordination mode change of the arene ring from eta(6) to eta(2) along with its rotation. When the intermediate goes to the product, the arene ring slips back from eta(2) to eta(6) coordination. This coordinated movement of the arene ring makes the associative anti attack an accessible pathway for the substitution process. Our calculations predict very similar activation barriers for both syn and anti attacks. In the dissociative path, the rate-determining step is the generation of a coordinatively unsaturated 16-electron ruthenium species. This turns out to be viable once solvent effects are included. The large size of the ancillary ligands on Ru makes the dissociative process as favorable as the associative process. Activation energy calculations reveal that although the dissociative path is favorable for kappa(1) complexes, both dissociative and associative processes can have significant contribution to the hydrolysis reaction in kappa(2) complexes. Once activated by hydrolysis, these complexes react with guanine and adenine bases of DNA. The thermodynamic stabilities of complexes formed with the nucleobases are also presented.
Resumo:
A series of isomeric cationic surfactants (S1-S5) bearing a long alkyl chain that carries a 1,4-phenylene unit and a trimethyl ammonium headgroup was synthesized; the location of the phenyl ring within the alkyl tail was varied in an effort to understand its influence on the amphiphilic properties of the surfactants. The cmc's of the surfactants were estimated using ionic conductivity measurements and isothermal calorimetric titrations (ITC); the values obtained by the two methods were found to be in excellent agreement. The ITC measurements provided additional insight into the various thermodynamic parameters associated with the micellization process. Although all five surfactants have exactly the same molecular formula, their micellar properties were seen to vary dramatically depending on the location of the phenyl ring; the cmc was seen to decrease by almost an order of magnitude when the phenyl ring was moved from the tail end (cmc of S1 is 23 mM) to the headgroup region (cmc of S5 is 3 mM). In all cases, the enthalpy of micellization was negative but the entropy of micellization was positive, suggesting that in all of these systems the formation of micelles is both enthalpically and entropically favored. As expected, the decrease in cmc values upon moving the phenyl ring from the tail end to he headgroup region is accompanied by an increase in the thermodynamic driving force (Delta G) for micellization. To understand further the differences in the micellar structure of these surfactants, small-angle neutron scattering (SANS) measurements were carried out; these measurements reveal that the aggregation number of the micelles increases as the cmc decreases. This increase in the aggregation number is also accompanied by an increase in the asphericity of the micellar aggregate and a decrease in the fractional charge. Geometric packing arguments are presented to account for these changes in aggregation behavior as a function of phenyl ring location.
Resumo:
Norbornadiene and 1,2-bismethoxycarbonylcyclobutadiene furnish a novel heptacyclic system 3(whose X-ray crystal structure has been determined)and an annulated pterodactylane derivative 4 in a single step.
Resumo:
Enantiospecific synthesis of the AB ring system of 5-8-5 tricyclic diterpenes fusicoccanes has been accomplished, starting from the readily available monoterpene (R)-limonene employing an reaction as the key step.
Resumo:
A short access to homocalystegine analogues silylated at C7 is described. The synthesis involves the desymmetrization of a (phenyldimethylsilyl)methylcycloheptatriene using osmium-mediated dihydroxylation, followed by the diol protection and a cycloaddition involving the remaining diene moiety and an acylnitroso reagent. Additions of the osmium and acylnitroso reagents were shown, through X-ray diffraction studies of the resulting major isomers, to occur anti and syn, respectively, relative to the SiCH2 substituent. N-O bond cleavage on the resulting cycloadduct then produces the aminopolyol having a silylmethyl substituent. Oxidation of the C-Si bond also afforded an access to unusual amino-heptitols having five contiguous stereogenic centers. In the course of this work, we finally observed a unusual rearrangement taking place on cycloheptanone 18 substituted by two acetyl groups and a neighboring Boc-protected amine. A profound reorganization of the substituents on the seven-membered ring effectively took place under acidic conditions (TFA) leading to the thermodynamically more stable homocalystegine-type compound., DFT calculations of the conformational energy of isomeric silyl homocalystegines indicated that the product observed upon the acid-mediated rearrangement was the most stable of a series of analogues with various distributions of substituents along the seven-membered ring backbone. A tentative mechanism is proposed to rationalize the acetate migrations and inversions of the stereochemistry at various stereocenters.