886 resultados para Association Studies
Resumo:
To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.
Resumo:
Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations.
Resumo:
Family studies suggest a genetic component to the etiology of chronic kidney disease (CKD) and end stage renal disease (ESRD). Previously, we identified 16 loci for eGFR in genome-wide association studies, but the associations of these single nucleotide polymorphisms (SNPs) for incident CKD or ESRD are unknown. We thus investigated the association of these loci with incident CKD in 26,308 individuals of European ancestry free of CKD at baseline drawn from eight population-based cohorts followed for a median of 7.2 years (including 2,122 incident CKD cases defined as eGFR <60ml/min/1.73m(2) at follow-up) and with ESRD in four case-control studies in subjects of European ancestry (3,775 cases, 4,577 controls). SNPs at 11 of the 16 loci (UMOD, PRKAG2, ANXA9, DAB2, SHROOM3, DACH1, STC1, SLC34A1, ALMS1/NAT8, UBE2Q2, and GCKR) were associated with incident CKD; p-values ranged from p = 4.1e-9 in UMOD to p = 0.03 in GCKR. After adjusting for baseline eGFR, six of these loci remained significantly associated with incident CKD (UMOD, PRKAG2, ANXA9, DAB2, DACH1, and STC1). SNPs in UMOD (OR = 0.92, p = 0.04) and GCKR (OR = 0.93, p = 0.03) were nominally associated with ESRD. In summary, the majority of eGFR-related loci are either associated or show a strong trend towards association with incident CKD, but have modest associations with ESRD in individuals of European descent. Additional work is required to characterize the association of genetic determinants of CKD and ESRD at different stages of disease progression.
Resumo:
There are many known examples of multiple semi-independent associations at individual loci; such associations might arise either because of true allelic heterogeneity or because of imperfect tagging of an unobserved causal variant. This phenomenon is of great importance in monogenic traits but has not yet been systematically investigated and quantified in complex-trait genome-wide association studies (GWASs). Here, we describe a multi-SNP association method that estimates the effect of loci harboring multiple association signals by using GWAS summary statistics. Applying the method to a large anthropometric GWAS meta-analysis (from the Genetic Investigation of Anthropometric Traits consortium study), we show that for height, body mass index (BMI), and waist-to-hip ratio (WHR), 3%, 2%, and 1%, respectively, of additional phenotypic variance can be explained on top of the previously reported 10% (height), 1.5% (BMI), and 1% (WHR). The method also permitted a substantial increase (by up to 50%) in the number of loci that replicate in a discovery-validation design. Specifically, we identified 74 loci at which the multi-SNP, a linear combination of SNPs, explains significantly more variance than does the best individual SNP. A detailed analysis of multi-SNPs shows that most of the additional variability explained is derived from SNPs that are not in linkage disequilibrium with the lead SNP, suggesting a major contribution of allelic heterogeneity to the missing heritability.
Resumo:
Extensive population-based genome-wide association studies have identified an association between the FTO gene and BMI; however, the mechanism of action is still unknown. To determine whether FTO may influence weight regulation through psychological and behavioral factors, seven single-nucleotide polymorphisms (SNPs) of the FTO gene were genotyped in 1,085 individuals with anorexia nervosa (AN) and 677 healthy weight controls from the international Price Foundation Genetic Studies of Eating Disorders. Each SNP was tested in association with eating disorder phenotypes and measures that have previously been associated with eating behavior pathology: trait anxiety, harm-avoidance, novelty seeking, impulsivity, obsessionality, compulsivity, and concern over mistakes. After appropriate correction for multiple comparisons, no significant associations between individual FTO gene SNPs and eating disorder phenotypes or related eating behavior pathology were identified in cases or controls. Thus, this study found no evidence that FTO gene variants associated with weight regulation in the general population are associated with eating disorder phenotypes in AN participants or matched controls. © 2011 Wiley-Liss, Inc.
Resumo:
Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP.
Resumo:
Discussion on improving the power of genome-wide association studies to identify candidate variants and genes is generally centered on issues of maximizing sample size; less attention is given to the role of phenotype definition and ascertainment. The authors used genome-wide data from patients infected with human immunodeficiency virus type 1 (HIV-1) to assess whether differences in type of population (622 seroconverters vs. 636 seroprevalent subjects) or the number of measurements available for defining the phenotype resulted in differences in the effect sizes of associations between single nucleotide polymorphisms and the phenotype, HIV-1 viral load at set point. The effect estimate for the top 100 single nucleotide polymorphisms was 0.092 (95% confidence interval: 0.074, 0.110) log(10) viral load (log(10) copies of HIV-1 per mL of blood) greater in seroconverters than in seroprevalent subjects. The difference was even larger when the authors focused on chromosome 6 variants (0.153 log(10) viral load) or on variants that achieved genome-wide significance (0.232 log(10) viral load). The estimates of the genetic effects tended to be slightly larger when more viral load measurements were available, particularly among seroconverters and for variants that achieved genome-wide significance. Differences in phenotype definition and ascertainment may affect the estimated magnitude of genetic effects and should be considered in optimizing power for discovering new associations.
Resumo:
Genome-wide association studies (GWASs) have identified multiple loci associated with cross-sectional eGFR, but a systematic genetic analysis of kidney function decline over time is missing. Here we conducted a GWAS meta-analysis among 63,558 participants of European descent, initially from 16 cohorts with serial kidney function measurements within the CKDGen Consortium, followed by independent replication among additional participants from 13 cohorts. In stage 1 GWAS meta-analysis, single-nucleotide polymorphisms (SNPs) at MEOX2, GALNT11, IL1RAP, NPPA, HPCAL1, and CDH23 showed the strongest associations for at least one trait, in addition to the known UMOD locus, which showed genome-wide significance with an annual change in eGFR. In stage 2 meta-analysis, the significant association at UMOD was replicated. Associations at GALNT11 with Rapid Decline (annual eGFR decline of 3 ml/min per 1.73 m(2) or more), and CDH23 with eGFR change among those with CKD showed significant suggestive evidence of replication. Combined stage 1 and 2 meta-analyses showed significance for UMOD, GALNT11, and CDH23. Morpholino knockdowns of galnt11 and cdh23 in zebrafish embryos each had signs of severe edema 72 h after gentamicin treatment compared with controls, but no gross morphological renal abnormalities before gentamicin administration. Thus, our results suggest a role in the deterioration of kidney function for the loci GALNT11 and CDH23, and show that the UMOD locus is significantly associated with kidney function decline.Kidney International advance online publication, 10 December 2014; doi:10.1038/ki.2014.361.
Resumo:
Clopidogrel is a widely used antiplatelet drug used in preventing vascular events after suffering a first stoke. Genome-wide association studies (GWAS) has not been able to establish a clear association between polymorphisms and recurrence. Therefore in the present final master project an epigenetic approach is proposed. Using an array based technology, 450.000 CpG sites across all genome were assessed in 48 individuals (21 cases and 21 controls). Looking at differentially methylated levels between cases and controls, 58 CpG sites (DMGs) were found. Although, no clear locus was observed. Looking individually to each 49 genes, two appeared to be important to our study. TRAF3 and ADAMTS2 are gens highly related to platelet aggregation. In orther to confirm these result, a new DNA methylation study will be done in a larger cohort, using Sequenom technology.
Resumo:
BACKGROUND AND AIMS: Parental history (PH) and genetic risk scores (GRSs) are separately associated with coronary heart disease (CHD), but evidence regarding their combined effects is lacking. We aimed to evaluate the joint associations and predictive ability of PH and GRSs for incident CHD. METHODS: Data for 4283 Caucasians were obtained from the population-based CoLaus Study, over median follow-up time of 5.6 years. CHD was defined as incident myocardial infarction, angina, percutaneous coronary revascularization or bypass grafting. Single nucleotide polymorphisms for CHD identified by genome-wide association studies were used to construct unweighted and weighted versions of three GRSs, comprising of 38, 53 and 153 SNPs respectively. RESULTS: PH was associated with higher values of all weighted GRSs. After adjustment for age, sex, smoking, diabetes, systolic blood pressure, low and high density lipoprotein cholesterol, PH was significantly associated with CHD [HR 2.61, 95% CI (1.47-4.66)] and further adjustment for GRSs did not change this estimate. Similarly, one standard deviation change of the weighted 153-SNPs GRS was significantly associated with CHD [HR 1.50, 95% CI (1.26-1.80)] and remained so, after further adjustment for PH. The weighted, 153-SNPs GRS, but not PH, modestly improved discrimination [(C-index improvement, 0.016), p = 0.048] and reclassification [(NRI improvement, 8.6%), p = 0.027] beyond cardiovascular risk factors. After including both the GRS and PH, model performance improved further [(C-index improvement, 0.022), p = 0.006]. CONCLUSION: After adjustment for cardiovascular risk factors, PH and a weighted, polygenic GRS were jointly associated with CHD and provided additive information for coronary events prediction.
Resumo:
Genome-wide linkage studies have identified the 9q22 chromosomal region as linked with colorectal cancer (CRC) predisposition. A candidate gene in this region is transforming growth factor beta receptor 1 (TGFBR1). Investigation of TGFBR1 has focused on the common genetic variant rs11466445, a short exonic deletion of nine base pairs which results in truncation of a stretch of nine alanine residues to six alanine residues in the gene product. While the six alanine (*6A) allele has been reported to be associated with increased risk of CRC in some population based study groups this association remains the subject of robust debate. To date, reports have been limited to population-based case-control association studies, or case-control studies of CRC families selecting one affected individual per family. No study has yet taken advantage of all the genetic information provided by multiplex CRC families. Methods: We have tested for an association between rs11466445 and risk of CRC using several family-based statistical tests in a new study group comprising members of non-syndromic high risk CRC families sourced from three familial cancer centres, two in Australia and one in Spain. Results: We report a finding of a nominally significant result using the pedigree-based association test approach (PBAT; p = 0.028), while other family-based tests were non-significant, but with a p-value < 0.10 in each instance. These other tests included the Generalised Disequilibrium Test (GDT; p = 0.085), parent of origin GDT Generalised Disequilibrium Test (GDT-PO; p = 0.081) and empirical Family-Based Association Test (FBAT; p = 0.096, additive model). Related-person case-control testing using the 'More Powerful' Quasi-Likelihood Score Test did not provide any evidence for association (M-QL5; p = 0.41). Conclusions: After conservatively taking into account considerations for multiple hypothesis testing, we find little evidence for an association between the TGFBR1*6A allele and CRC risk in these families. The weak support for an increase in risk in CRC predisposed families is in agreement with recent meta-analyses of case-control studies, which estimate only a modest increase in sporadic CRC risk among 6*A allele carriers.
Resumo:
Association studies between ADIPOR1 genetic variants and predisposition to type 2 diabetes (DM2) have provided contradictory results. We determined if two single nucleotide polymorphisms (SNP c.-8503G>A and SNP c.10225C>G) in regulatory regions of ADIPOR1 in 567 Brazilian individuals of European (EA; N = 443) or African (AfA; N = 124) ancestry from rural (quilombo remnants; N = 439) and urban (N = 567) areas. We detected a significant effect of ethnicity on the distribution of the allelic frequencies of both SNPs in these populations (EA: -8503A = 0.27; AfA: -8503A = 0.16; P = 0.001 and EA: 10225G = 0.35; AfA: 10225G = 0.51; P < 0.001). Neither of the polymorphisms were associated with DM2 in the case-control study in EA (SNP c.-8503G>A: DM2 group -8503A = 0.26; control group -8503A = 0.30; P = 0.14/SNP 10225C>G: DM2 group 10225G = 0.37; control group 10225G = 0.32; P = 0.40) and AfA populations (SNP c.-8503G>A: DM2 group -8503A = 0.16; control group -8503A = 0.15; P = 0.34/SNP 10225C>G: DM2 group 10225G = 0.51; control group 10225G = 0.52; P = 0.50). Similarly, none of the polymorphisms were associated with metabolic/anthropometric risk factors for DM2 in any of the three populations, except for HDL cholesterol, which was significantly higher in AfA heterozygotes (GC = 53.75 ± 17.26 mg/dL) than in homozygotes. We conclude that ADIPOR1 polymorphisms are unlikely to be major risk factors for DM2 or for metabolic/anthropometric measurements that represent risk factors for DM2 in populations of European and African ancestries.
Resumo:
A Bayesian approach to analysing data from family-based association studies is developed. This permits direct assessment of the range of possible values of model parameters, such as the recombination frequency and allelic associations, in the light of the data. In addition, sophisticated comparisons of different models may be handled easily, even when such models are not nested. The methodology is developed in such a way as to allow separate inferences to be made about linkage and association by including theta, the recombination fraction between the marker and disease susceptibility locus under study, explicitly in the model. The method is illustrated by application to a previously published data set. The data analysis raises some interesting issues, notably with regard to the weight of evidence necessary to convince us of linkage between a candidate locus and disease.
Resumo:
A study or experiment can be described as sequential if its design includes one or more interim analyses at which it is possible to stop the study, having reached a definitive conclusion concerning the primary question of interest. The potential of the sequential study to terminate earlier than the equivalent fixed sample size study means that, typically, there are ethical and economic advantages to be gained from using a sequential design. These advantages have secured a place for the methodology in the conduct of many clinical trials of novel therapies. Recently, there has been increasing interest in pharmacogenetics: the study of how DNA variation in the human genome affects the safety and efficacy of drugs. The potential for using sequential methodology in pharmacogenetic studies is considered and the conduct of candidate gene association studies, family-based designs and genome-wide association studies within the sequential setting is explored. The objective is to provide a unified framework for the conduct of these types of studies as sequential designs and hence allow experimenters to consider using sequential methodology in their future pharmacogenetic studies.
Resumo:
BACKGROUND: Evidence suggests the wide variation in platelet response within the population is genetically controlled. Unraveling the complex relationship between sequence variation and platelet phenotype requires accurate and reproducible measurement of platelet response. OBJECTIVE: To develop a methodology suitable for measuring signaling pathway-specific platelet phenotype, to use this to measure platelet response in a large cohort, and to demonstrate the effect size of sequence variation in a relevant model gene. METHODS: Three established platelet assays were evaluated: mobilization of [Ca(2+)](i), aggregometry and flow cytometry, each in response to adenosine 5'-diphosphate (ADP) or the glycoprotein (GP) VI-specific crosslinked collagen-related peptide (CRP). Flow cytometric measurement of fibrinogen binding and P-selectin expression in response to a single, intermediate dose of each agonist gave the best combination of reproducibility and inter-individual variability and was used to measure the platelet response in 506 healthy volunteers. Pathway specificity was ensured by blocking the main subsidiary signaling pathways. RESULTS: Individuals were identified who were hypo- or hyper-responders for both pathways, or who had differential responses to the two agonists, or between outcomes. 89 individuals, retested three months later using the same methodology, showed high concordance between the two visits in all four assays (r(2) = 0.872, 0.868, 0.766 and 0.549); all subjects retaining their phenotype at recall. The effect of sequence variation at the GP6 locus accounted for approximately 35% of the variation in the CRP-XL response. CONCLUSION: Genotyping-phenotype association studies in a well-characterized, large cohort provides a powerful strategy to measure the effect of sequence variation in genes regulating the platelet response.