784 resultados para Ascites microenvironment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loss of p53 is considered to allow progression of colorectal tumors from the adenoma to the carcinoma stage. Using mice with an intestinal epithelial cell (IEC)-specific p53 deletion, we demonstrate that loss of p53 alone is insufficient to initiate intestinal tumorigenesis but markedly enhances carcinogen-induced tumor incidence and leads to invasive cancer and lymph node metastasis. Whereas p53 controls DNA damage and IEC survival during the initiation stage, loss of p53 during tumor progression is associated with increased intestinal permeability, causing formation of an NF-κB-dependent inflammatory microenvironment and the induction of epithelial-mesenchymal transition. Thus, we propose a p53-controlled tumor-suppressive function that is independent of its well-established role in cell-cycle regulation, apoptosis, and senescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, we reported a functional interaction between miR-21 and its identified chemokine target CCL20 in colorectal cancer (CRC) cell lines. Here, we investigated whether such functional interactions are permitted at the cellular level which would require an inverse correlation of expression and also co-expression of miR-21 and CCL20 in the same cell. Expression profiling was performed using qPCR, and ELISA, in situ hybridization and immunohistochemistry were applied for the presentation of their cellular localization. We demonstrated that miR-21 as well as CCL20 were both significantly upregulated in CRC tissues; thus, showing no antidromic expression pattern. This provided an initial clue that miR-21 and CCL20 may not be expressed in the same cell. In addition, we located miR-21 expression at the cellular level predominantly in stromal cells such as tumor-associated fibroblasts and to a minor degree in immune cells such as macrophages and lymphocytes. Likewise, CCL20 expression was primarily detected in tumor-infiltrating immune cells. Thus, investigating the cellular localization of miR-21 and its target CCL20 revealed that both molecules are expressed predominantly in the microenvironment of CRC tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tumor microenvironment is comprised of a vast array of heterogeneous cells including both normal and neoplastic cells. The tumor stroma recruitment process has been exploited for an effective gene delivery technique using bone marrow derived MSC. Targeted migration of the MSC toward the tumor microenvironment, while successful, is not yet fully understood. This study was designed to assess the role of CD44 in the migration of MSC toward the tumor microenvironment and to determine the implications of CD44-deficient MSC within the tumor stroma. Inhibition of MSC migration was evaluated through a variety of methods in vitro and in vivo including CD44 receptor knockdown, CD44 antagonists, CD44 neutralizing antibodies and small molecule inhibitor of matrix metalloproteinases. Blocking CD44 signaling through MMP inhibition was characterized by lack of intracellular domain cleavage and lead to the decrease in Twist gene expression. A functional relationship between CD44 and Twist expression was confirmed by chromatin immunoprecipitation. Next, a series of murine tumor models were used to examine the role of CD44 deficient stroma within the tumor microenvironment. Labeled transgenic CD44 knockout (KO) MSC or wild type (WT) C57/B6 MSC were used to analyze the stromal incorporation within murine breast carcinomas (EO771 and 4T1). Subsequent tumors were analyzed for vessel formation (CD31), and the presence of tumor associated fibroblast (TAF) markers, α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and fibroblast specific protein (FSP). The tumors with CD44KO MSC cells had less vessel formation than the tumors with WT MSC. The lack of fibroblastic TAF population as defined by FAP/FSP expression by the CD44KO MSC admixed tumors suggest that the bone marrow derived population of MSC were unable to contribute to the fibroblastic stromal population. Subsequently, a bone marrow transplantation experiment confirmed the endogenous migratory deficiencies of the CD44KO bone marrow derived stromal cells toward the tumor microenvironment in vivo. WT mice with CD44KO bone marrow had less CD44KOderived tumor stroma compared to mice with WT bone marrow. These results indicate that CD44 is crucial to stromal cell migration and incorporation to the tumor microenvironment as TAF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Refractory ascites (RA) affects 10% of patients with advanced cirrhosis and ascites. Usual therapy includes large volume paracentesis, and in selected patients, a transjugular portosystemic shunt (TIPS). These therapies may be associated with increased morbidity: paracentesis may induce circulatory dysfunction and impair quality of life and TIPS may induce encephalopathy and is associated with increased mortality in patients with severe liver dysfunction. We present the results of a multicenter, non-randomized trial to assess the safety and efficacy of a new automated pump system for treatment of RA. METHODS: Forty patients at 9 centers (February 2010-June 2011) received an implanted pump for the automated removal of ascites from the peritoneal cavity into the bladder, from where it was eliminated through normal urination. Patients were followed-up for 6months. The primary study outcome was safety. Secondary outcomes included recurrence of tense ascites and pump performance. RESULTS: Surgical complications occurred early in the study and became less frequent. The pump system removed 90% of the ascites and significantly reduced the median number of large volume paracentesis per month [3.4 (range 1-6) vs. 0.2 (range 0-4); p <0.01]. Cirrhosis-related adverse events decreased along follow-up. CONCLUSIONS: The automated pump seems an efficacious tool to move out ascites from the peritoneal cavity to the bladder. Its safety is still moderate, but a broad use in different countries will improve the surgical technique as well as the medical surveillance. A prospective randomized clinical trial vs. large volume paracentesis is underway to confirm these preliminary results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To investigate the effect of gonadotropin-releasing hormone analogues (GnRHa) on the peritoneal fluid microenvironment in women with endometriosis. STUDY DESIGN Peritoneal fluid was collected from 85 women with severe endometriosis (rAFS stage III and IV) during laparoscopic surgery during the proliferative phase. Prior to surgery clinical data were collected. The concentrations of specific markers for endometriosis in the peritoneal fluid were determined using an ELISA and a comparison between peritoneal fluid markers in women using GnRHa and no hormonal treatment was performed using a non-parametric Mann-Whitney U test. RESULTS The study included peritoneal fluid from 39 patients who had been administered GnRHa (Zoladex(®)) in the three months prior to surgery and 46 from women with no hormonal treatment in this period. Concentrations of IL-8, PAPP-A, glycodelin-A and midkine were significantly reduced in the GnRHa treatment group compared to women receiving no hormonal treatment. RANTES, MCP-1, ENA-78, TNF-α, OPG, IP-10 and defensin showed no significant change between the two groups. CONCLUSIONS GnRHa mediate a significant regression in the inflammatory nature of the peritoneal microenvironment in women with endometriosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FcαRI (CD89), the human Fc receptor for IgA, is highly expressed on neutrophil granulocytes. In this study, we show that FcαRI induces different forms of neutrophil death, depending on the inflammatory microenvironment. The susceptibility of inflammatory neutrophils from sepsis or rheumatoid arthritis toward death induced by specific mAb, or soluble IgA at high concentrations, was enhanced. Although unstimulated cells experienced apoptosis following anti-FcαRI mAb stimulation, preactivation with cytokines or TLR agonists in vitro enhanced FcαRI-mediated death by additional recruitment of caspase-independent pathways, but this required PI3K class IA and MAPK signaling. Transmission electron microscopy of FcαRI-stimulated cells revealed cytoplasmic changes with vacuolization and mitochondrial swelling, nuclear condensation, and sustained plasma membrane. Coculture experiments with macrophages revealed anti-inflammatory effects of the partially caspase-independent death of primed cells following FcαRI engagement. Our data suggest that FcαRI has the ability to regulate neutrophil viability and to induce different forms of neutrophils depending on the inflammatory microenvironment and specific characteristics of the ligand-receptor interactions. Furthermore, these findings have potential implications for FcαRI-targeted strategies to treat neutrophil-associated inflammatory diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic cancer cells intimately interact with a complex microenvironment that influences pancreatic cancer progression. The pancreas is innervated by fibers of the sympathetic nervous system (SNS) and pancreatic cancer cells have receptors for SNS neurotransmitters which suggests that pancreatic cancer may be sensitive to neural signaling. In vitro and non-orthotopic in vivo studies showed that neural signaling modulates tumour cell behavior. However the effect of SNS signaling on tumor progression within the pancreatic microenvironment has not previously been investigated. To address this, we used in vivo optical imaging to non-invasively track growth and dissemination of primary pancreatic cancer using an orthotopic mouse model that replicates the complex interaction between pancreatic tumor cells and their microenvironment. Stress-induced neural activation increased primary tumor growth and tumor cell dissemination to normal adjacent pancreas. These effects were associated with increased expression of invasion genes by tumor cells and pancreatic stromal cells. Pharmacological activation of β-adrenergic signaling induced similar effects to chronic stress, and pharmacological β-blockade reversed the effects of chronic stress on pancreatic cancer progression. These findings indicate that neural β-adrenergic signaling regulates pancreatic cancer progression and suggest β-blockade as a novel strategy to complement existing therapies for pancreatic cancer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we explore the role of the interplay between host immune response and epithelial-mesenchymal-transition (EMT)-Type tumor-budding on the outcome of pancreatic adenocarcinoma (PDAC).CD4+, CD8+, and FOXP3+T-cells as well as iNOS+ (M1) and CD163+- macrophages (M2) were assessed on multipunch tissue-microarrays containing 120 well-characterized PDACs, precursor lesions (PanINs) and corresponding normal tissue. Counts were normalized for the percentage of tumor/spot and associated with the clinico-pathological features, including peritumoral (PTB) and intratumoral (ITB) EMT-Type tumor-budding and outcome.Increased FOXP3+T-cell-counts and CD163-macrophages and decreased CD8+T-cell-counts were observed in PDACs compared with normal tissues and PanINs (p < 0.0001). Increased peritumoral FOXP3+T-cell-counts correlated significantly with venous invasion, distant metastasis, R1-status, high-grade ITB, PTB and independently with reduced survival. Increased intratumoral FOXP3+T-cells correlated with lymphatic invasion, N1-stage, PTB and marginally with adverse outcome. High peritumoral CD163-counts correlated with venous invasion, PTB and ITB. High intratumoral CD163-counts correlated with higher T-stage and PTB.PDAC-microenvironment displays a tumor-favoring immune-cell composition especially in the immediate environment of the tumor-buds that promotes further growth and indicates a close interaction of the immune response with the EMT-process. Increased peritumoral FOXP3+T-cell density is identified as an independent adverse prognostic factor in PDAC. Patients with phenotypically aggressive PDACs may profit from targeted immunotherapy against FOXP3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor budding (single tumor cells or small tumor cell clusters) at the invasion front of colorectal cancer (CRC) is an adverse prognostic indicator linked to epithelial-mesenchymal transition. This study characterized the immunogenicity of tumor buds by analyzing the expression of the major histocompatibility complex (MHC) class I in the invasive tumor cell compartment. We hypothesized that maintenance of a functional MHC-I antigen presentation pathway, activation of CD8+ T-cells, and release of antitumoral effector molecules such as cytotoxic granule-associated RNA binding protein (TIA1) in the tumor microenvironment can counter tumor budding and favor prolonged patient outcome. Therefore, a well-characterized multipunch tissue microarray of 220 CRCs was profiled for MHC-I, CD8, and TIA1 by immunohistochemistry. Topographic expression analysis of MHC-I was performed using whole tissue sections (n = 100). Kirsten rat sarcoma viral oncogene homolog (KRAS) and B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutations, mismatch repair (MMR) protein expression, and CpG-island methylator phenotype (CIMP) were investigated. Our results demonstrated that membranous MHC-I expression is frequently down-regulated in the process of invasion. Maintained MHC-I at the invasion front strongly predicted low-grade tumor budding (P = 0.0004). Triple-positive MHC-I/CD8/TIA1 in the tumor microenvironment predicted early T-stage (P = 0.0031), absence of lymph node metastasis (P = 0.0348), lymphatic (P = 0.0119) and venous invasion (P = 0.006), and highly favorable 5-year survival (90.9% vs 39.3% in triple-negative patients; P = 0.0032). MHC-I loss was frequent in KRAS-mutated, CD8+ CRC (P = 0.0228). No relationship was observed with CIMP, MMR, or BRAF mutation. In conclusion, tumor buds may evade immune recognition through downregulation of membranous MHC-I. A combined profile of MHC-I/CD8/TIA1 improves the prognostic value of antitumoral effector cells and should be preferred to a single marker approach.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The progressive growth of epithelial ovarian cancer tumor is regulated by proangiogenic molecules and growth factors released by tumor cells and the microenvironment. Previous studies showed that the expression of interleukin-8 (IL-8) directly correlates with the progression of human ovarian carcinomas implanted into the peritoneal cavity of nude mice. We examined the expression level of IL-8 in archival specimens of primary human ovarian carcinoma from patients undergoing curative surgery by in situ mRNA hybridization technique. The expression of IL-8 was significantly higher in patients with stage III disease than in patients with stage I disease. To investigate the role of IL-8 in the progressive growth of ovarian cancer, we isolated high- and low-IL-8 producing clones from parental Hey-A8 human ovarian cancer cells, and compared their proliferative activity and tumorigenicity in nude mice. The effect of exogenous IL-8 and IL-8 neutralizing antibody on ovarian cancer cell proliferation was investigated. Finally, we studied the modulation of IL-8 expression in ovarian cancer cells by sense and antisense IL-8 expression vector transfection and its effect on proliferation and tumorigenicity. We concluded that IL-8 has a direct growth potentiating activity in human ovarian cancer cells. ^ The expression level of IL-8 directly correlates with disease progression of human ovarian cancer, but the mechanism of induction is unknown. Since hypoxia and acidic pH are common features in solid tumors, we determined whether hypoxic and acidic conditions could regulate the expression of IL-8. Culturing the human ovarian cancer cells in hypoxic or acidic medium led to a significant increase in IL-8 mRNA and protein. Hypoxic- and acidosis-mediated transient increase in IL-8 expression involved both transcriptional activation of the IL-8 gene and enhanced stability of the IL-8 mRNA. Furthermore, we showed that IL-8 transcription activation by hypoxia or acidosis required the cooperation of NF-κB and AP-1 binding sites. ^ Finally, we studied novel therapies against human ovarian cancer. First, we determined whether inhibition of the catalytic tyrosine kinase activity of the receptors for vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) inhibits the formation of malignant ascites and the progressive growth of human ovarian carcinoma cells implanted into the peritoneal cavity of nude mice. Our results suggest that blockade of the VEGF/VPF receptor may be an efficient strategy to inhibit formation of malignant ascites and growth of VEGF/VPF-dependent human ovarian carcinomas. Secondly, we determined whether local sustained production of murine interferon-β could inhibit the growth of human ovarian cancer cells in the peritoneal cavity of nude mice. Our results showed that local production of IFN-β could inhibit the in vivo growth of human ovarian cancer cells by upregulating the expression of the inducible nitric oxide synthase (NOS) in host macrophages. ^