859 resultados para Artificial wetland abatement
Resumo:
Constructed wetlands are among the most common Water Sensitive Urban Design (WSUD) measures for stormwater treatment. These systems have been extensively studied to understand their performance and influential treatment processes. Unfortunately, most past studies have been undertaken considering a wetland system as a lumped system with a primary focus on the reduction of the event mean concentration (EMC) values of specific pollutant species or total pollutant load removal. This research study adopted an innovative approach by partitioning the inflow runoff hydrograph and then investigating treatment performance in each partition and their relationships with a range of hydraulic factors. The study outcomes confirmed that influenced by rainfall characteristics, the constructed wetland displays different treatment characteristics for the initial and later sectors of the runoff hydrograph. The treatment of small rainfall events (<15 mm) is comparatively better at the beginning of runoff events while the trends in pollutant load reductions for large rainfall events (>15 mm) are generally lower at the beginning and gradually increase towards the end of rainfall events. This highlights the importance of ensuring that the inflow into a constructed wetland has low turbulence in order to achieve consistent treatment performance for both, small and large rainfall events.
Resumo:
Healthy governance systems are key to delivering effective outcomes in any broad domain of natural resource management (NRM). One of Australia's emerging NRM governance domains is our national framework for greenhouse gas abatement (GGA), as delivered through a wide range of management practices in the Australian landscape. The emerging Landscape-Based GGA Domain represents an innovative governance space that straddles both the nation's broader NRM Policy and Delivery Domain and Australia's GGA Domain. As a point-in-time benchmark, we assess the health of this hybrid domain as it stood at the end of 2013. At that time, the domain was being progressed through the Australian government's Clean Energy Package and, more particularly, its Carbon Farming Initiative (CFI). While significant changes are currently under development by a new Australian government, this paper explores key areas of risk within the governance system underpinning this emerging hybrid domain at that point in time. We then map some potential reform or continuous improvement pathways required (from national to paddock scale) with the view to securing improved landscape outcomes over time through widespread GGA activities.
Resumo:
Nowadays, demand for automated Gas metal arc welding (GMAW) is growing and consequently need for intelligent systems is increased to ensure the accuracy of the procedure. To date, welding pool geometry has been the most used factor in quality assessment of intelligent welding systems. But, it has recently been found that Mahalanobis Distance (MD) not only can be used for this purpose but also is more efficient. In the present paper, Artificial Neural Networks (ANN) has been used for prediction of MD parameter. However, advantages and disadvantages of other methods have been discussed. The Levenberg–Marquardt algorithm was found to be the most effective algorithm for GMAW process. It is known that the number of neurons plays an important role in optimal network design. In this work, using trial and error method, it has been found that 30 is the optimal number of neurons. The model has been investigated with different number of layers in Multilayer Perceptron (MLP) architecture and has been shown that for the aim of this work the optimal result is obtained when using MLP with one layer. Robustness of the system has been evaluated by adding noise into the input data and studying the effect of the noise in prediction capability of the network. The experiments for this study were conducted in an automated GMAW setup that was integrated with data acquisition system and prepared in a laboratory for welding of steel plate with 12 mm in thickness. The accuracy of the network was evaluated by Root Mean Squared (RMS) error between the measured and the estimated values. The low error value (about 0.008) reflects the good accuracy of the model. Also the comparison of the predicted results by ANN and the test data set showed very good agreement that reveals the predictive power of the model. Therefore, the ANN model offered in here for GMA welding process can be used effectively for prediction goals.
Resumo:
Details the developments to date of an unmanned air vehicle (UAV) based on a standard size 60 model helicopter. The design goal is to have the helicopter achieve stable hover with the aid of an INS and stereo vision. The focus of the paper is on the development of an artificial neural network (ANN) that makes use of only the INS data to generate hover commands, which are used to directly manipulate the flight servos. Current results show that networks incorporating some form of recurrency (state history) offer little advantage over those without. At this stage, the ANN has partially maintained periods of hover even with misaligned sensors.
Resumo:
A series of novel thermo-responsive composite sorbents, were prepared by free-radical co-polymerization of N-isopropylacrylamide (NIPAm) and the silylanized Mg/Al layered double hydroxides (SiLDHs), named as PNIPAm-co-SiLDHs. For keeping the high affinity of Mg/Al layered double hydroxides towards anions, the layered structure of LDHs was assumed to be reserved in PNIPAm-co-SiLDHs by the silanization of the wet LDH plates as evidenced by the X-ray powder diffraction. The sorption capacity of PNIPAm-co-SiLDH (13.5 mg/g) for Orange-II from water was found to be seven times higher than that of PNIPAm (2.0 mg/g), and the sorption capacities of arsenate onto PNIPAm-co-SiLDH are also greater than that onto PNIPAm, for both As(III) and As(V). These sorption results suggest that reserved LDH structure played a significant role in enhancing the sorption capacities. NO3− intercalated LDHs composite showed the stronger sorption capacity for Orange-II than that of CO32−. After sorption, the PNIPAm-co-SiLDH may be removed from water because of its gel-like nature, and may be easily regenerated contributing to the accelerated desorption of anionic contaminants from PNIPAm-co-SiLDHs by the unique phase-transfer feature through slightly heating (to 40 °C). These recyclable and regeneratable properties of thermo-responsive nanocomposites facilitate its potential application in the in-situ remediation of organic and inorganic anions from contaminated water.
Resumo:
This study analyzes the management of wastewater pollutants in a number of Chinese industrial sectors from 1998 to 2010. We use decomposition analysis to calculate changes in wastewater pollutant emissions that result from cleaner production processes, end-of-pipe treatment, structural changes in industry, and changes in the scale of production. We focus on one indicator of water quality and three pollutants: chemical oxygen demand (COD), petroleum, cyanide, and volatile phenols. We find that until 2002, COD emissions were mainly reduced through end-of-pipe treatments. Cleaner production processes didn’t begin contributing to COD emissions reductions until the introduction of a 2003 law that enforced their implementation. Petroleum emissions were primarily lowered through cleaner production mechanisms, which have the added benefit of reducing the input cost of intermediate petroleum. Diverse and effective pollution abatement strategies for cyanide and volatile phenols are emerging among industries in China. It will be important for the government to consider differences between industries should they choose to regulate the emissions of specific chemical substances.
Resumo:
The Artificial Neural Networks (ANNs) are being used to solve a variety of problems in pattern recognition, robotic control, VLSI CAD and other areas. In most of these applications, a speedy response from the ANNs is imperative. However, ANNs comprise a large number of artificial neurons, and a massive interconnection network among them. Hence, implementation of these ANNs involves execution of computer-intensive operations. The usage of multiprocessor systems therefore becomes necessary. In this article, we have presented the implementation of ART1 and ART2 ANNs on ring and mesh architectures. The overall system design and implementation aspects are presented. The performance of the algorithm on ring, 2-dimensional mesh and n-dimensional mesh topologies is presented. The parallel algorithm presented for implementation of ART1 is not specific to any particular architecture. The parallel algorithm for ARTE is more suitable for a ring architecture.
Resumo:
In this report an artificial neural network (ANN) based automated emergency landing site selection system for unmanned aerial vehicle (UAV) and general aviation (GA) is described. The system aims increase safety of UAV operation by emulating pilot decision making in emergency landing scenarios using an ANN to select a safe landing site from available candidates. The strength of an ANN to model complex input relationships makes it a perfect system to handle the multicriteria decision making (MCDM) process of emergency landing site selection. The ANN operates by identifying the more favorable of two landing sites when provided with an input vector derived from both landing site's parameters, the aircraft's current state and wind measurements. The system consists of a feed forward ANN, a pre-processor class which produces ANN input vectors and a class in charge of creating a ranking of landing site candidates using the ANN. The system was successfully implemented in C++ using the FANN C++ library and ROS. Results obtained from ANN training and simulations using randomly generated landing sites by a site detection simulator data verify the feasibility of an ANN based automated emergency landing site selection system.
Resumo:
This thesis presents an interdisciplinary analysis of how models and simulations function in the production of scientific knowledge. The work is informed by three scholarly traditions: studies on models and simulations in philosophy of science, so-called micro-sociological laboratory studies within science and technology studies, and cultural-historical activity theory. Methodologically, I adopt a naturalist epistemology and combine philosophical analysis with a qualitative, empirical case study of infectious-disease modelling. This study has a dual perspective throughout the analysis: it specifies the modelling practices and examines the models as objects of research. The research questions addressed in this study are: 1) How are models constructed and what functions do they have in the production of scientific knowledge? 2) What is interdisciplinarity in model construction? 3) How do models become a general research tool and why is this process problematic? The core argument is that the mediating models as investigative instruments (cf. Morgan and Morrison 1999) take questions as a starting point, and hence their construction is intentionally guided. This argument applies the interrogative model of inquiry (e.g., Sintonen 2005; Hintikka 1981), which conceives of all knowledge acquisition as process of seeking answers to questions. The first question addresses simulation models as Artificial Nature, which is manipulated in order to answer questions that initiated the model building. This account develops further the "epistemology of simulation" (cf. Winsberg 2003) by showing the interrelatedness of researchers and their objects in the process of modelling. The second question clarifies why interdisciplinary research collaboration is demanding and difficult to maintain. The nature of the impediments to disciplinary interaction are examined by introducing the idea of object-oriented interdisciplinarity, which provides an analytical framework to study the changes in the degree of interdisciplinarity, the tools and research practices developed to support the collaboration, and the mode of collaboration in relation to the historically mutable object of research. As my interest is in the models as interdisciplinary objects, the third research problem seeks to answer my question of how we might characterise these objects, what is typical for them, and what kind of changes happen in the process of modelling. Here I examine the tension between specified, question-oriented models and more general models, and suggest that the specified models form a group of their own. I call these Tailor-made models, in opposition to the process of building a simulation platform that aims at generalisability and utility for health-policy. This tension also underlines the challenge of applying research results (or methods and tools) to discuss and solve problems in decision-making processes.
Resumo:
Light interception is a major factor influencing plant development and biomass production. Several methods have been proposed to determine this variable, but its calculation remains difficult in artificial environments with heterogeneous light. We propose a method that uses 3D virtual plant modelling and directional light characterisation to estimate light interception in highly heterogeneous light environments such as growth chambers and glasshouses. Intercepted light was estimated by coupling an architectural model and a light model for different genotypes of the rosette species Arabidopsis thaliana (L.) Heynh and a sunflower crop. The model was applied to plants of contrasting architectures, cultivated in isolation or in canopy, in natural or artificial environments, and under contrasting light conditions. The model gave satisfactory results when compared with observed data and enabled calculation of light interception in situations where direct measurements or classical methods were inefficient, such as young crops, isolated plants or artificial conditions. Furthermore, the model revealed that A. thaliana increased its light interception efficiency when shaded. To conclude, the method can be used to calculate intercepted light at organ, plant and plot levels, in natural and artificial environments, and should be useful in the investigation of genotype-environment interactions for plant architecture and light interception efficiency. This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.
Resumo:
Intensive nursery systems are designed to culture mud crab postlarvae through a critical phase in preparation for stocking into growout systems. This study investigated the influence of stocking density and provision of artificial habitat on the yield of a cage culture system. For each of three batches of postlarvae, survival, growth and claw loss were assessed after each of three nursery phases ending at crab instars C1/C2, C4/C5 and C7/C8. Survival through the first phase was highly variable among batches with a maximum survival of 80% from megalops to a mean crab instar of 1.5. Stocking density between 625 and 2300 m-2 did not influence survival or growth in this first phase. Stocking densities tested in phases 2 and 3 were 62.5, 125 and 250 m -2. At the end of phases 2 and 3, there were five instar stages present, representing a more than 20-fold size disparity within the populations. Survival became increasingly density-sensitive following the first phase, with higher densities resulting in significantly lower survival (phase 2: 63% vs. 79%; phase 3: 57% vs. 64%). The addition of artificial habitat in the form of pleated netting significantly improved survival at all densities. The mean instar attained by the end of phase 2 was significantly larger at a lower stocking density and without artificial habitat. No significant effect of density or habitat on harvest size was detected in phase 3. The highest incidence of claw loss was 36% but was reduced by lowering stocking densities and addition of habitat. For intensive commercial production, yield can be significantly increased by addition of a simple net structure but rapidly decreases the longer crablets remain in the nursery.
Resumo:
Research in the field of NOx abatement has grown significantly in the past two decades. The general trend has been to develop new catalysts with complex materials in order to meet the stringent environmental regulations. This review discusses briefly about the different sources of NOx and its adverse effect on the ecosystem. The main portion of the review discusses the progress and development of various catalysts for NOx removal from exhaust by NO decomposition, NO reduction by CO or H-2 or NH3 or hydrocarbons. The importance of understanding the mechanism of NO decomposition and reduction in presence of metal ion substituted catalysts is emphasized. Some conclusions are made on the various catalytic approaches to NOx abatement.
Resumo:
A commercial non-specific gas sensor array system was evaluated in terms of its capability to monitor the odour abatement performance of a biofiltration system developed for treating emissions from a commercial piggery building. The biofiltration system was a modular system comprising an inlet ducting system, humidifier and closed-bed biofilter. It also included a gravimetric moisture monitoring and water application system for precise control of moisture content of an organic woodchip medium. Principal component analysis (PCA) of the sensor array measurements indicated that the biofilter outlet air was significantly different to both inlet air of the system and post-humidifier air. Data pre-processing techniques including normalising and outlier handling were applied to improve the odour discrimination performance of the non-specific gas sensor array. To develop an odour quantification model using the sensor array responses of the non-specific sensor array, PCA regression, artificial neural network (ANN) and partial least squares (PLS) modelling techniques were applied. The correlation coefficient (r(2)) values of the PCA, ANN, and PLS models were 0.44, 0.62 and 0.79, respectively.
Resumo:
Protection of coastal wetland environments is an important prerequisite to effective and sustainable fisheries management and conservation of habitats for the use of future generations. Mangroves, saltmarshes and seagrasses directly support local and offshore fisheries through the provision of food, shelter, breeding and nursery grounds. As such, these vegetated wetland environments along with sandbars, mudflats, rocky foreshores and reefs have significant economic value as well as their intrinsic aesthetic and ecological values. This report summarises the results of the mapping undertaken in the Gulf of Carpentaria Region from the Queensland/Northern Territory border eastwards to the western bank of the Flinders River (hereafter called the Gulf Study Area). The study was undertaken in order to: 1. document and map coastal wetlands of the Gulf Study Area; 2. document levels of existing disturbance to and protection of these wetlands; 3. examine existing recreational, indigenous and commercial fisheries of the region; 4. evaluate the conservation values of the areas investigated from the viewpoint of fisheries productivity and as habitat for important and/or threatened species for future FHA/Marine Protected Area (MPA) declaration. Dataset URL Link: Queensland Coastal Wetlands Resources Mapping data. [Dataset]