972 resultados para Arterial segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Injury to endothelial calls is thought to be important to the development of the vascular lesion of chronic rejection. It was the aim of this study to develop a semiquantitative method to assess endothelial injury in arterial grafts and to document the injury produced by cold storage preservation and additional warm ischaemia. Twelve- and 24-h cold preservation of rat aortic segments, together with an additional 1 h of warm ischaemia, were assessed. Electron micrographs of representative endothelial cells were scored for cytoplasmic, nuclear and mitochondrial injury. The overall injury score was obtained by addition of the individual scores. Storage for up to 24 h in University of Wisconsin (UW) and Terasaki did not produce any injury. Twenty-four hours of storage in Euro-Collins resulted in endothelial cell death. Injury occurred after 12 h of storage in Ross, Collins and normal saline, and the injury increased following 24 h of storage. One hour of warm ischaemia did not increase the injury. Injury to endothelial cells varies with the preservation solution used and the time of cold storage, so that both the type of solution and the storage time should be taken into account in clinical studies looking at the influence of cold ischaemia time and graft outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ouabain increases vascular resistance and may induce hypertension by inhibiting the Na+ pump. The effects of 0.18 and 18 µg/kg, and 1.8 mg/kg ouabain pretreatment on the phenylephrine (PHE; 0.1, 0.25 and 0.5 µg, in bolus)-evoked pressor responses were investigated using anesthetized normotensive (control and uninephrectomized) and hypertensive (1K1C and DOCA-salt treated) rats. Treatment with 18 µg/kg ouabain increased systolic and diastolic blood pressure in all groups studied. However, the magnitude of this increase was larger for the hypertensive 1K1C and DOCA-salt rats than for normotensive animals, while the pressor effect of 0.18 µg/kg ouabain was greater only in DOCA-salt rats. A very large dose (1.8 mg/kg) produced toxic effects on the normotensive control but not on uninephrectomized or 1K1C rats. Rat tail vascular beds were perfused to analyze the effects of 10 nM ouabain on the pressor response to PHE. In all animals, 10 nM ouabain increased the PHE pressor response, but this increase was larger in hypertensive DOCA-salt rats than in normotensive and 1K1C rats. Results suggested that a) increases in diastolic blood pressure induced by 18 µg/kg ouabain were larger in hypertensive than normotensive rats; b) in DOCA-salt rats, smaller ouabain doses had a stronger effect than in other groups; c) hypertensive and uninephrectomized rats were less sensitive to toxic doses of ouabain, and d) after treatment with 10 nM ouabain isolated tail vascular beds from DOCA-salt rats were more sensitive to the pressor effect of PHE than those from normotensive and 1K1C hypertensive rats. These data suggest that very small doses of ouabain, which might produce nanomolar plasma concentrations, enhance pressor reactivity in DOCA-salt hypertensive rats, supporting the idea that endogenous ouabain may contribute to the increase and maintenance of vascular tone in hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The available data suggests that hypotension caused by Hg2+ administration may be produced by a reduction of cardiac contractility or by cholinergic mechanisms. The hemodynamic effects of an intravenous injection of HgCl2 (5 mg/kg) were studied in anesthetized rats (N = 12) by monitoring left and right ventricular (LV and RV) systolic and diastolic pressures for 120 min. After HgCl2 administration the LV systolic pressure decreased only after 40 min (99 ± 3.3 to 85 ± 8.8 mmHg at 80 min). However, RV systolic pressure increased, initially slowly but faster after 30 min (25 ± 1.8 to 42 ± 1.6 mmHg at 80 min). Both right and left diastolic pressures increased after HgCl2 treatment, suggesting the development of diastolic ventricular dysfunction. Since HgCl2 could be increasing pulmonary vascular resistance, isolated lungs (N = 10) were perfused for 80 min with Krebs solution (continuous flow of 10 ml/min) containing or not 5 µM HgCl2. A continuous increase in pulmonary vascular resistance was observed, suggesting the direct effect of Hg2+ on the pulmonary vessels (12 ± 0.4 to 29 ± 3.2 mmHg at 30 min). To examine the interactions of Hg2+ and changes in cholinergic activity we analyzed the effects of acetylcholine (Ach) on mean arterial blood pressure (ABP) in anesthetized rats (N = 9) before and after Hg2+ treatment (5 mg/kg). Using the same amount and route used to study the hemodynamic effects we also examined the effects of Hg2+ administration on heart and plasma cholinesterase activity (N = 10). The in vivo hypotensive response to Ach (0.035 to 10.5 µg) was reduced after Hg2+ treatment. Cholinesterase activity (µM h-1 mg protein-1) increased in heart and plasma (32 and 65%, respectively) after Hg2+ treatment. In conclusion, the reduction in ABP produced by Hg2+ is not dependent on a putative increase in cholinergic activity. HgCl2 mainly affects cardiac function. The increased pulmonary vascular resistance and cardiac failure due to diastolic dysfunction of both ventricles are factors that might contribute to the reduction of cardiac output and the fall in arterial pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artigo original Ergoespirometria

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objetivo: investigar a influência de duas sessões únicas de exercício resistido (circuito com pesos) e aeróbio sobre as alterações pressóricas, em indivíduos sedentários e normotensos. Métodos: foram avaliados pela monitorização numa situação controle, sem realização de exercícios (MAPA 1) 25 indivíduos, após exercício resistido (MAPA 2) e após exercício aeróbio (MAPA 3). Os exercícios resistidos foram realizados sob forma de circuito com pesos, com intensidade de 40% da força máxima individual e os exercícios aeróbicos em cicloergômetro, com intensidade entre 60% e 70% da freqüência cardíaca (FC) máxima alcançada no teste ergométrico. Resultados: a pressão arterial sistólica (PAS) de 24h e sub-períodos vigília e sono não apresentaram variações estatisticamente significantes quando comparada à MAPA2 e MAPA3 e MAPA2 e MAPA3 entre si. A pressão arterial diastólica (PAD) de 24h e diurna apresentaram reduções significantes (P<0,05). A média da freqüência cardíaca de 24h e no período vigília apresentou aumentos significativos (P<0,05) quando comparada a MAPA2 à MAPA3. Conclusão: uma sessão única de exercício resistido em indivíduos normotensos foi suficiente para promover reduções significativas dos níveis tensionais, no período de sono após o exercício, e a de exercício aeróbio nesses mesmos indivíduos, foi mais eficaz em promover reduções significativas dos níveis pressóricos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to assess the effects of the immunosuppressant rapamycin (Rapamune®, Sirolimus) on both resistance vessel responsiveness and atherosclerosis in apolipoprotein E-deficient 8-week-old male mice fed a normal rodent diet. Norepinephrine (NE)-induced vasoconstriction, acetylcholine (ACh)- and sodium nitroprusside (SNP)-induced vasorelaxation of isolated mesenteric bed, and atherosclerotic lesions were evaluated. After 12 weeks of orally administered rapamycin (5 mg·kg-1·day-1, N = 9) and compared with untreated (control, N = 9) animals, rapamycin treatment did not modify either NE-induced vasoconstriction (maximal response: 114 ± 4 vs 124 ± 10 mmHg, respectively) or ACh- (maximal response: 51 ± 8 vs 53 ± 5%, respectively) and SNP-induced vasorelaxation (maximal response: 73 ± 6 vs 74 ± 6%, respectively) of the isolated vascular mesenteric bed. Despite increased total cholesterol in treated mice (982 ± 59 vs 722 ± 49 mg/dL, P < 0.01), lipid deposition on the aorta wall vessel was significantly less in rapamycin-treated animals (37 ± 12 vs 68 ± 8 µm2 x 103). These results indicate that orally administered rapamycin is effective in attenuating the progression of atherosclerotic plaque without affecting the responsiveness of resistance vessels, supporting the idea that this immunosuppressant agent might be of potential benefit against atherosclerosis in patients undergoing therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maintenance of arterial pressure at levels adequate to perfuse the tissues is a basic requirement for the constancy of the internal environment and survival. The objective of the present review was to provide information about the basic reflex mechanisms that are responsible for the moment-to-moment regulation of the cardiovascular system. We demonstrate that this control is largely provided by the action of arterial and non-arterial reflexes that detect and correct changes in arterial pressure (baroreflex), blood volume or chemical composition (mechano- and chemosensitive cardiopulmonary reflexes), and changes in blood-gas composition (chemoreceptor reflex). The importance of the integration of these cardiovascular reflexes is well understood and it is clear that processing mainly occurs in the nucleus tractus solitarii, although the mechanism is poorly understood. There are several indications that the interactions of baroreflex, chemoreflex and Bezold-Jarisch reflex inputs, and the central nervous system control the activity of autonomic preganglionic neurons through parallel afferent and efferent pathways to achieve cardiovascular homeostasis. It is surprising that so little appears in the literature about the integration of these neural reflexes in cardiovascular function. Thus, our purpose was to review the interplay between peripheral neural reflex mechanisms of arterial blood pressure and blood volume regulation in physiological and pathophysiological states. Special emphasis is placed on the experimental model of arterial hypertension induced by N-nitro-L-arginine methyl ester (L-NAME) in which the interplay of these three reflexes is demonstrable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objetivo: Avaliar o consumo de sal e a relação sódio/potássio urinário em amostra randomizada de população urbana etnicamente miscigenada. Métodos: Foi selecionada uma amostra randômica de 2.268 residentes de Vitória, ES, entre 25 e 64 anos de idade. Os indivíduos foram escolhidos por amostragem domiciliar realizada em 1999/2000, dos quais 1.663 (73,3%) compareceram ao hospital para a realização de exames padronizados. O consumo estimado de sal, Na+ e K+ foi determinado por meio da coleta de urina de 12h no período noturno (19h às 7h) e do gasto mensal de sal domiciliar referido durante a entrevista. A pressão arterial clínica foi medida duas vezes por diferentes pesquisadores treinados em condições padronizadas, usando esfignomamômetro de mercúrio. Para análise estatística foram utilizados o teste de Student e o teste de Tukey. Resultados: A excreção urinária de Na+ foi mais alta em homens e em indivíduos de menores condições socioeconômicas (P<0,000). Não foi observada diferença entre os grupos étnicos. A excreção de K+ não se relacionou com nível socioeconômico e raça, mas foi significativamente mais alta entre os homens (25±18 x 22±18 mEq/12h; P=0,002). Foi observada uma correlação linear positiva entre a excreção urinária de Na+ e pressão arterial sistólica (r=0,15) e diastólica (r=0,19). Indivíduos hipertensos apresentaram maior excreção urinária de Na+ e relação Na/K, quando comparados com indivíduos normotensos. O consumo de sal relatado foi aproximadamente 50% do consumo estimado pela excreção urinária de 12h (em torno de 45% da excreção urinária de 24h). Conclusões: A ingestão de sal é fortemente influenciada pelo nível socioeconômico e pode, parcialmente, explicar a alta prevalência de hipertensão arterial nas classes socioeconômicas mais baixas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals’ transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey’s biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image segmentation is an ubiquitous task in medical image analysis, which is required to estimate morphological or functional properties of given anatomical targets. While automatic processing is highly desirable, image segmentation remains to date a supervised process in daily clinical practice. Indeed, challenging data often requires user interaction to capture the required level of anatomical detail. To optimize the analysis of 3D images, the user should be able to efficiently interact with the result of any segmentation algorithm to correct any possible disagreement. Building on a previously developed real-time 3D segmentation algorithm, we propose in the present work an extension towards an interactive application where user information can be used online to steer the segmentation result. This enables a synergistic collaboration between the operator and the underlying segmentation algorithm, thus contributing to higher segmentation accuracy, while keeping total analysis time competitive. To this end, we formalize the user interaction paradigm using a geometrical approach, where the user input is mapped to a non-cartesian space while this information is used to drive the boundary towards the position provided by the user. Additionally, we propose a shape regularization term which improves the interaction with the segmented surface, thereby making the interactive segmentation process less cumbersome. The resulting algorithm offers competitive performance both in terms of segmentation accuracy, as well as in terms of total analysis time. This contributes to a more efficient use of the existing segmentation tools in daily clinical practice. Furthermore, it compares favorably to state-of-the-art interactive segmentation software based on a 3D livewire-based algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While fluoroscopy is still the most widely used imaging modality to guide cardiac interventions, the fusion of pre-operative Magnetic Resonance Imaging (MRI) with real-time intra-operative ultrasound (US) is rapidly gaining clinical acceptance as a viable, radiation-free alternative. In order to improve the detection of the left ventricular (LV) surface in 4D ultrasound, we propose to take advantage of the pre-operative MRI scans to extract a realistic geometrical model representing the patients cardiac anatomy. This could serve as prior information in the interventional setting, allowing to increase the accuracy of the anatomy extraction step in US data. We have made use of a real-time 3D segmentation framework used in the recent past to solve the LV segmentation problem in MR and US data independently and we take advantage of this common link to introduce the prior information as a soft penalty term in the ultrasound segmentation algorithm. We tested the proposed algorithm in a clinical dataset of 38 patients undergoing both MR and US scans. The introduction of the personalized shape prior improves the accuracy and robustness of the LV segmentation, as supported by the error reduction when compared to core lab manual segmentation of the same US sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the current frontiers in the clinical management of Pectus Excavatum (PE) patients is the prediction of the surgical outcome prior to the intervention. This can be done through computerized simulation of the Nuss procedure, which requires an anatomically correct representation of the costal cartilage. To this end, we take advantage of the costal cartilage tubular structure to detect it through multi-scale vesselness filtering. This information is then used in an interactive 2D initialization procedure which uses anatomical maximum intensity projections of 3D vesselness feature images to efficiently initialize the 3D segmentation process. We identify the cartilage tissue centerlines in these projected 2D images using a livewire approach. We finally refine the 3D cartilage surface through region-based sparse field level-sets. We have tested the proposed algorithm in 6 noncontrast CT datasets from PE patients. A good segmentation performance was found against reference manual contouring, with an average Dice coefficient of 0.75±0.04 and an average mean surface distance of 1.69±0.30mm. The proposed method requires roughly 1 minute for the interactive initialization step, which can positively contribute to an extended use of this tool in clinical practice, since current manual delineation of the costal cartilage can take up to an hour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative analysis of cine cardiac magnetic resonance (CMR) images for the assessment of global left ventricular morphology and function remains a routine task in clinical cardiology practice. To date, this process requires user interaction and therefore prolongs the examination (i.e. cost) and introduces observer variability. In this study, we sought to validate the feasibility, accuracy, and time efficiency of a novel framework for automatic quantification of left ventricular global function in a clinical setting.