434 resultados para Argumentaci?n jur?dica
Resumo:
Begins whole volume numbering with vol. 55, 1921
Resumo:
Mode of access: Internet.
Resumo:
"Trabajo dedicado a la juventad amiga y enemiga de los Jesuitas, por uno que fué enemigo de ellos antes de conocerlos, y que se hizo su apasionado despues de haberlos conocido a fondo por la historia; por su doctrina y por su trato: a la primera, para que se confirme en su amistad, a la segunda, para que trate de adquirirla con el objeto de conseguir la ciencia y la virtud."
Resumo:
El problema desarrollado en este trabajo se basa en la necesidad de reconstruir en los (as) docentes estrategias metodol?gicas significativas y experimentaciones como l?dicas que establezcan puentes de relaci?n entre el conocimiento cient?fico y el conocimiento cotidiano que forme un acervo te?rico en los estudiantes, que sean flexibles en su saber hacer ya que los j?venes en la actualidad desconocen del valor de la ciencia en su formaci?n personal y social. El MEN (Ministerio de Educaci?n Nacional) est? en consonancia con el continuo avance de los docentes en la renovaci?n de sus estrategias; pero es poco el conocimiento significativo por parte de los docentes sobre metodolog?as innovadoras desde la experimentaci?n como l?dica. Como resultado de lo anterior se formula el siguiente interrogante de investigaci?n: ?C?mo a partir de la Experimentaci?n como L?dica se puede favorecer la interpretaci?n del concepto de energ?a en los estudiantes de grado sexto? Este interrogante genera una metodolog?a la cual se resume en lo siguiente: (1) Reflexionar sobre la ense?anza; (2) Plantear una propuesta de integraci?n de la experimentaci?n y la l?dica (tener en cuenta para esto los niveles de apertura); (3) Proponer la ejecuci?n de actividades que permitieran el uso de la experimentaci?n como l?dica; y (4) Reflexionar sobre la pr?ctica docente, apoy?ndose en Posner, G. (1998) establecer una renovaci?n continua de la pr?ctica docentes pues: ?diferentes situaciones requieren diferentes pr?cticas.? Un manejo activo de un eclecticismo reflexivo en cuesti?n de modelos pedag?gicos y did?cticos; se pretende contribuir en el proceso cognitivo practico del docente.
Resumo:
This study identifies and analyzes the problems of academic and argumentative writing in third semester students of the Bachelor of Foreign Languages at the Universidad del Valle, in order to determine which are the most common difficulties arisen in the process of writing. Formal aspects of language and rhetorical elements will be analyzed in the written productions of students. This is a qualitative ethnographic study that aims to determine how the relationship between the pedagogical intervention, classroom interactions and classroom activities in the course of Composition II, help to overcome these difficulties. The research shows that students have many difficulties in the academic writing as the use of an appropriate lexical, cohesion between paragraphs of a text, use of punctuation, citation and conjugation of verbs. In relation to the construction of the argument, it was found problems in students? texts: students fail in prevailing an argumentative sequence, there is not an approach and continuation of a thesis throughout the text, there is no consistency between the thesis and the arguments developed throughout the production, problems in the use of rebuttals and backings in the argumentation. In addition to these, and although they are not the most common problems, interference of words from a foreign language (English or French) and orality marks were found in the students? argumentative essays. Finally, this work demonstrates that educational intervention and classroom interactions help to improve the different versions of the written productions, though, some problems remain unsolved at the end of the intervention.
Resumo:
Verso: Moeller F. Gustav jur. o. med. dr. statsrad medl....
Resumo:
O objetivo do presente trabalho foi estudar o comportamento dos potenciais superficiais e do perfil de potencial atraves da membrana de eritr ocito em func ao da forca i onica e das cargas superficiais, usando um modelo que leva em conta as cargas el etricas do glicoc alix e das proteınas citoplasm aticas, al em das cargas superficiais da bicamada lipıdica e os efeitos dos eletr olitos divalentes. Programas especıficos em linguagem C foram elaborados para o c alculo desses potenciais, tomando como dados num ericos resultados experimentais de medidas de mobilidade eletrofor etica de eritr ocitos para diferentes valores de forca i onica. Neste c alculo, o metodo para tratamento dos dados eletrofor eticos indicado por Hsu et al.[57] foi incluıdo em nosso modelo. A equac ao de Poisson-Boltzmann nao linear foi resolvida por computac ao num erica, usando o metodo de Runge-Kutta de quarta ordem, obtendo-se os perfis de potencial. Os resultados mostraram que a estimativa da densidade de carga el etrica na superfıcie de c elulas usando a equac ao cl assica de Helmholtz-Smoluchowski conduz a valores que nao conseguem refletir as forcas que regem o comportamento eletrofor etico das mesmas. O presente modelo gerou valores de potenciais superficiais e perfis de potencial para a membrana do eritr ocito bem distintos daqueles obtidos anteriormente para um modelo descrito por uma equac ao de Poisson-Boltzmann linear. Nossos resultados confirmam que a avaliac ao de parametros el etricos superficiais da membrana de eritr ocito, envolvendo dados oriundos de eletroforese, deve incluir c alculos hidrodin amicos al em de eletroest aticos, como sugerido por Hsu et al. [57].
Resumo:
This paper describes how Bayesian updates of dialogue state can be used to build a bus information spoken dialogue system. The resulting system was deployed as part of the 2010 Spoken Dialogue Challenge. The purpose of this paper is to describe the system, and provide both simulated and human evaluations of its performance. In control tests by human users, the success rate of the system was 24.5% higher than the baseline Lets Go! system. ©2010 IEEE.
Resumo:
The partially observable Markov decision process (POMDP) provides a popular framework for modelling spoken dialogue. This paper describes how the expectation propagation algorithm (EP) can be used to learn the parameters of the POMDP user model. Various special probability factors applicable to this task are presented, which allow the parameters be to learned when the structure of the dialogue is complex. No annotations, neither the true dialogue state nor the true semantics of user utterances, are required. Parameters optimised using the proposed techniques are shown to improve the performance of both offline transcription experiments as well as simulated dialogue management performance. ©2010 IEEE.
Resumo:
This article presents a novel algorithm for learning parameters in statistical dialogue systems which are modeled as Partially Observable Markov Decision Processes (POMDPs). The three main components of a POMDP dialogue manager are a dialogue model representing dialogue state information; a policy that selects the system's responses based on the inferred state; and a reward function that specifies the desired behavior of the system. Ideally both the model parameters and the policy would be designed to maximize the cumulative reward. However, while there are many techniques available for learning the optimal policy, no good ways of learning the optimal model parameters that scale to real-world dialogue systems have been found yet. The presented algorithm, called the Natural Actor and Belief Critic (NABC), is a policy gradient method that offers a solution to this problem. Based on observed rewards, the algorithm estimates the natural gradient of the expected cumulative reward. The resulting gradient is then used to adapt both the prior distribution of the dialogue model parameters and the policy parameters. In addition, the article presents a variant of the NABC algorithm, called the Natural Belief Critic (NBC), which assumes that the policy is fixed and only the model parameters need to be estimated. The algorithms are evaluated on a spoken dialogue system in the tourist information domain. The experiments show that model parameters estimated to maximize the expected cumulative reward result in significantly improved performance compared to the baseline hand-crafted model parameters. The algorithms are also compared to optimization techniques using plain gradients and state-of-the-art random search algorithms. In all cases, the algorithms based on the natural gradient work significantly better. © 2011 ACM.
Resumo:
Reinforcement techniques have been successfully used to maximise the expected cumulative reward of statistical dialogue systems. Typically, reinforcement learning is used to estimate the parameters of a dialogue policy which selects the system's responses based on the inferred dialogue state. However, the inference of the dialogue state itself depends on a dialogue model which describes the expected behaviour of a user when interacting with the system. Ideally the parameters of this dialogue model should be also optimised to maximise the expected cumulative reward. This article presents two novel reinforcement algorithms for learning the parameters of a dialogue model. First, the Natural Belief Critic algorithm is designed to optimise the model parameters while the policy is kept fixed. This algorithm is suitable, for example, in systems using a handcrafted policy, perhaps prescribed by other design considerations. Second, the Natural Actor and Belief Critic algorithm jointly optimises both the model and the policy parameters. The algorithms are evaluated on a statistical dialogue system modelled as a Partially Observable Markov Decision Process in a tourist information domain. The evaluation is performed with a user simulator and with real users. The experiments indicate that model parameters estimated to maximise the expected reward function provide improved performance compared to the baseline handcrafted parameters. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an agenda-based user simulator which has been extended to be trainable on real data with the aim of more closely modelling the complex rational behaviour exhibited by real users. The train-able part is formed by a set of random decision points that may be encountered during the process of receiving a system act and responding with a user act. A sample-based method is presented for using real user data to estimate the parameters that control these decisions. Evaluation results are given both in terms of statistics of generated user behaviour and the quality of policies trained with different simulators. Compared to a handcrafted simulator, the trained system provides a much better fit to corpus data and evaluations suggest that this better fit should result in improved dialogue performance. © 2010 Association for Computational Linguistics.
Resumo:
Modelling dialogue as a Partially Observable Markov Decision Process (POMDP) enables a dialogue policy robust to speech understanding errors to be learnt. However, a major challenge in POMDP policy learning is to maintain tractability, so the use of approximation is inevitable. We propose applying Gaussian Processes in Reinforcement learning of optimal POMDP dialogue policies, in order (1) to make the learning process faster and (2) to obtain an estimate of the uncertainty of the approximation. We first demonstrate the idea on a simple voice mail dialogue task and then apply this method to a real-world tourist information dialogue task. © 2010 Association for Computational Linguistics.