908 resultados para Area and perimeter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equilibrium dissociation of recombinant human IFN-γ was monitored as a function of pressure and sucrose concentration. The partial molar volume change for dissociation was −209 ± 13 ml/mol of dimer. The specific molar surface area change for dissociation was 12.7 ± 1.6 nm2/molecule of dimer. The first-order aggregation rate of recombinant human IFN-γ in 0.45 M guanidine hydrochloride was studied as a function of sucrose concentration and pressure. Aggregation proceeded through a transition-state species, N*. Sucrose reduced aggregation rate by shifting the equilibrium between native state (N) and N* toward the more compact N. Pressure increased aggregation rate through increased solvation of the protein, which exposes more surface area, thus shifting the equilibrium away from N toward N*. The changes in partial molar volume and specific molar surface area between the N* and N were −41 ± 9 ml/mol of dimer and 3.5 ± 0.2 nm2/molecule, respectively. Thus, the structural change required for the formation of the transition state for aggregation is small relative to the difference between N and the dissociated state. Changes in waters of hydration were estimated from both specific molar surface area and partial molar volume data. From partial molar volume data, estimates were 25 and 128 mol H2O/mol dimer for formation of the aggregation transition state and for dissociation, respectively. From surface area data, estimates were 27 and 98 mol H2O/mol dimer. Osmotic stress theory yielded values ≈4-fold larger for both transitions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research is to understand the way in which students struggle with the distinction between dimensionality and “directionality” and if this type of potential confusion could be a factor affecting students’ tendency toward improper linear reasoning in the context of the relations between length and area of geometrical figures. 131 9th grade students were confronted with a multiple-choice test consisting of six problems related to the perimeter or the area of an enlarged geometrical figure, then some interviews were carried out to obtain qualitative data in relation to students’ reasoning. Results indicate that more than one fifth of the students’ answers could be characterized as based on directional thinking, suggesting that students struggled with the distinction between dimensionality and “directionality”. A single arrow showing one direction (image provided to the students) seemed to strengthen the tendency toward improper linear reasoning for the area problems. Two arrows showing two directions helped students to see a quadratic relation for the area problems.