901 resultados para Architecture - Conservation and restauration
Resumo:
Pollinating insects form a key component of European biodiversity, and provide a vital ecosystem service to crops and wild plants. There is growing evidence of declines in both wild and domesticated pollinators, and parallel declines in plants relying upon them. The STEP project (Status and Trends of European Pollinators, 2010-2015, www.step-project.net) is documenting critical elements in the nature and extent of these declines, examining key functional traits associated with pollination deficits, and developing a Red List for some European pollinator groups. Together these activities are laying the groundwork for future pollinator monitoring programmes. STEP is also assessing the relative importance of potential drivers of pollinator declines, including climate change, habitat loss and fragmentation, agrochemicals, pathogens, alien species, light pollution, and their interactions. We are measuring the ecological and economic impacts of declining pollinator services and floral resources, including effects on wild plant populations, crop production and human nutrition. STEP is reviewing existing and potential mitigation options, and providing novel tests of their effectiveness across Europe. Our work is building upon existing and newly developed datasets and models, complemented by spatially-replicated campaigns of field research to fill gaps in current knowledge. Findings are being integrated into a policy-relevant framework to create evidence-based decision support tools. STEP is establishing communication links to a wide range of stakeholders across Europe and beyond, including policy makers, beekeepers, farmers, academics and the general public. Taken together, the STEP research programme aims to improve our understanding of the nature, causes, consequences and potential mitigation of declines in pollination services at local, national, continental and global scales.
Resumo:
In the Tajik National Park (TNP) - a high-altitude area of nearly 26,000 km2 in Central Asia - past and present human activities visibly contrast with standard conservation requirements for protected areas worldwide. This paper focuses on resource management, and highlights three major processes that threaten both the sustainable use of natural resources and the preservation of nature per se: (i) intensified use of biomass as a fuel resource, (ii) inappropriate pasture management, and (iii) increased pressure on endangered wildlife. From analysis of these processes - their historical background, root causes, trends and interrelationships - options and needs to improve park management are proposed and discussed.
Resumo:
This article presents an empirical interdisciplinary study of an extensive participatory process that was carried out in 2004 in the recently established World Natural Heritage Site “Jungfrau–Aletsch– Bietschhorn” in the Swiss Alps. The study used qualitative and quantitative empirical methods of social science to address the question of success factors in establishing and concretizing a World Heritage Site. Current international scientific and policy debates agree that the most important success factors in defining pathways for nature conservation and protection are: linking development and conservation, involving multiple stakeholders, and applying participatory approaches. The results of the study indicate that linking development and conservation implies the need to extend the reach of negotiations beyond the area of conservation, and to develop both a regional perspective and a focus on sustainable regional development. In the process, regional and local stakeholders are less concerned with defining sustainability goals than elaborating strategies of sustainability, in particular defining the respective roles of the core sectors of society and economy. However, the study results also show that conflicting visions and perceptions of nature and landscape are important underlying currents in such negotiations. They differ significantly between various stakeholder categories and are an important cause of conflicts occurring at various stages of the participatory process.
Resumo:
The north-eastern escarpment of Madagascar contains the island’s last remaining large-scale humid forest massifs surrounded by diverse small-scale agricultural mosaics. There is high deforestation mainly caused by shifting cultivation practiced by local land users to produce upland rice for subsistence. Today, large protected areas restrict land users’ access to forests to collect wood and other forest products. Moreover, they are no more able to expand their cultivated land, which leads to shorter shifting cultivation cycles and decreasing plot sizes for irrigated rice and cash crop cultivation. Cash crop production of clove and vanilla is exposed to risks such as extreme inter-annual price fluctuations, pests and cyclones. In the absence of work opportunities, agricultural extension services and micro-finance schemes people are stuck in a poverty trap. New development strategies are needed to mitigate the trade-offs between forest conservation and human well-being. As landscape composition and livelihood strategies vary across the region, these strategies need to be spatially differentiated to avoid implementing generic solutions, which do not fit the local context. However, up to date, little is known about the spatial patterns of shifting cultivation and other land use systems at the regional level. This is mainly due to the high spatial and temporal dynamics inherent to shifting cultivation, which makes it difficult to monitor the dynamics of this land use system with remote sensing methods. Furthermore, knowledge about land users’ livelihood strategies and the risks and opportunities they face stems from very few local case studies. To overcome this challenge, firstly, we used remote sensing data and a landscape mosaic approach to delineate the main landscape types at the regional level. Secondly, we developed a land user typology based on socio-ecological data from household surveys in 45 villages spread throughout the region. Combining the land user typology with the landscape mosaic map allowed us to reveal spatial patterns of the interaction between landscapes and people and to better understand the trade-offs between forest conservation and local wellbeing. While shifting cultivation systems are being transformed into more intensive permanent agricultural systems in many countries around the globe, Madagascar seems to be an exception to this trend. Linking land cover information to human-environmental interactions over large areas is crucial to designing policies and to inform decision making for a more sustainable development of this resource-rich but poverty-prone context.
Resumo:
Today, more than 1000 World Heritage (WH) sites are inscribed on UNESCO’s list, 228 of which are natural and mixed heritage sites. Once focused primarily on conservation, World Natural Heritage (WNH) sites are increasingly seen as promoters of sustainable regional development. Sustainability-oriented regions, it is assumed, are safeguards for conservation and positively influence local conservation goals. Within UNESCO, discussions regarding the integration of sustainable development in official policies have recently gained momentum. In this article, we investigate the extent to which WNH sites trigger sustainability-oriented approaches in surrounding regions, and how such approaches in turn influence the WNH site and its protection. The results of the study are on the one hand based on a global survey with more than 60% of the WNH sites listed in 2011, and on the other hand on a complementary literature research. Furthermore, we analyze the policy framework necessary to support WNH sites in this endeavor. We conclude that a regional approach to WNH management is necessary to ensure that WNH sites support sustainable regional development effectively, but that the core focus of WNH status must remain environmental conservation.
Resumo:
This paper offers a principal-agent model of feasible private contracting in mitigation and conservation banking aimed at the protection of natural habitat and bio-diversity of US wetlands and uplands. It is shown that while it is straightforward to design an incentive contract, such a contract may not achieve the federally mandated objective of no net loss of habitat. This is because the minimum payment required as an economic incentive to private agents may be greater than what they should receive for the habitat values that they actually created in the field. This possible problem is shown to derive from nonconvexity in the production possibility set between the biological value of land as natural habitat and in non-habitat uses such as in urban development. The paper concludes with a consideration of several institutional devises that may promote the convergence of private contracting and the attainment of no net loss. These include the payment of subsidies, greater accuracy in the identification of actual quality by the principal, and the use of several incentive alignment devises.
Resumo:
Pinus uncinata forms forests in the centre and southwest of the Alps and in the subalpine Pyrenees (at around 1700 – 2600 m) (Costa Tenorio et al., 1997). The species reaches the southwestern limit of its distribution at the top of Mount Castillo de Vinuesa (Soria, Spain). The small population on this mountain occupies just 66 ha, but is very important from a geobotanical viewpoint since it is just one of two populations (the other being in the Sierra de Gúdar range in Teruel, Spain) isolated from the main area where the species is found in the Iberian Peninsula (The Pyrenees)
Resumo:
In arid countries worldwide, social conflicts between irrigation-based human development and the conservation of aquatic ecosystems are widespread and attract many public debates. This research focuses on the analysis of water and agricultural policies aimed at conserving groundwater resources and maintaining rurallivelihoods in a basin in Spain's central arid region. Intensive groundwater mining for irrigation has caused overexploitation of the basin's large aquifer, the degradation of reputed wetlands and has given rise to notable social conflicts over the years. With the aim of tackling the multifaceted socio-ecological interactions of complex water systems, the methodology used in this study consists in a novel integration into a common platform of an economic optimization model and a hydrology model WEAP (Water Evaluation And Planning system). This robust tool is used to analyze the spatial and temporal effects of different water and agricultural policies under different climate scenarios. It permits the prediction of different climate and policy outcomes across farm types (water stress impacts and adaptation), at basin's level (aquifer recovery), and along the policies’ implementation horizon (short and long run). Results show that the region's current quota-based water policies may contribute to reduce water consumption in the farms but will not be able to recover the aquifer and will inflict income losses to the rural communities. This situation would worsen in case of drought. Economies of scale and technology are evidenced as larger farms with cropping diversification and those equipped with modern irrigation will better adapt to water stress conditions. However, the long-term sustainability of the aquifer and the maintenance of rurallivelihoods will be attained only if additional policy measures are put in place such as the control of illegal abstractions and the establishing of a water bank. Within the policy domain, the research contributes to the new sustainable development strategy of the EU by concluding that, in water-scarce regions, effective integration of water and agricultural policies is essential for achieving the water protection objectives of the EU policies. Therefore, the design and enforcement of well-balanced region-specific polices is a major task faced by policy makers for achieving successful water management that will ensure nature protection and human development at tolerable social costs. From a methodological perspective, this research initiative contributes to better address hydrological questions as well as economic and social issues in complex water and human systems. Its integrated vision provides a valuable illustration to inform water policy and management decisions within contexts of water-related conflicts worldwide.
Resumo:
In volcanic islands, the rainfall regime and its torrential nature, together with the steep slopes and the soil types present are considered to be some of the main factors affecting forest hydrology and soil conservation. In such environments, rain regime is generally irregular and characterized by short and intense rainfalls, which could cause destructive flows at times, followed by long periods of rain absence. The volcanic nature of these islands have as a direct resultant steep slopes which influences the runoff volume and speed, as well as the amount of topsoil susceptible to be detached and transported downstream. The soil type also affects the susceptibility to erosion processes. Andisols are the most typical soil on volcanic islands. Their particularities derive their mineral constituents, called short-range-order products, which provide these soils with an increased structural stability, which in turn reduces their susceptibility to erosion. However, the land use changes and the environmental factors such as rain regime and steep slopes may be determinant factor in destabilizing these soils and ultimately a cause for soil erosion and runoffs, which become a threat to the population downstream. Green barriers have been traditionally used to prevent or reduce these processes, also to enhance the dew effect and the fog water collection, and as a firebreak which acts as a barrier to slow or stop the progress of a wildfire. Wooded species present and subsequently their performance have a major influence on their effectiveness. The use of this natural erosion and fire control methods on volcanic islands is discussed in this paper.