959 resultados para Arbitrary sizes
Resumo:
Using modified two- dimensional coupled- wave theory, the diffraction properties of ultrashort pulsed beams with arbitrary temporal profiles are studied with a volume holographic grating. Analytical expressions for the profiles of the transmitted and diffracted beams are obtained. It is shown that the Bragg selectivity bandwidth of the volume grating can be influenced by the geometry parameter. Numerical results are illustrated for three different temporal profiles. For different temporal profiles, the ratios of the diffraction bandwidths to input bandwidths are discussed.
Resumo:
The Maxwell integral equations of transfer are applied to a series of problems involving flows of arbitrary density gases about spheres. As suggested by Lees a two sided Maxwellian-like weighting function containing a number of free parameters is utilized and a sufficient number of partial differential moment equations is used to determine these parameters. Maxwell's inverse fifth-power force law is used to simplify the evaluation of the collision integrals appearing in the moment equations. All flow quantities are then determined by integration of the weighting function which results from the solution of the differential moment system. Three problems are treated: the heat-flux from a slightly heated sphere at rest in an infinite gas; the velocity field and drag of a slowly moving sphere in an unbounded space; the velocity field and drag torque on a slowly rotating sphere. Solutions to the third problem are found to both first and second-order in surface Mach number with the secondary centrifugal fan motion being of particular interest. Singular aspects of the moment method are encountered in the last two problems and an asymptotic study of these difficulties leads to a formal criterion for a "well posed" moment system. The previously unanswered question of just how many moments must be used in a specific problem is now clarified to a great extent.
Resumo:
A relatively simple transform from an arbitrary solution of the paraxial wave equation to the corresponding exact solution of the Helmholtz wave equation is derived in the condition that the evanescent waves are ignored and is used to study the corrections to the paraxial approximation of an arbitrary free-propagation beam. Specifically, the general lowest-order correction field is given in a very simple form and is proved to be exactly consistent with the perturbation method developed by Lax et nl. [Phys. Rev. A 11, 1365 (1975)]. Some special examples, such as the lowest-order correction to the paraxial approximation of a fundamental Gaussian beam whose waist plane has a parallel shin from the z = 0 plane, are presented. (C) 1998 Optical Society of America.
Resumo:
Spatiotemporal instabilities in nonlinear Kerr media with arbitrary higher-order dispersions are studied by use of standard linear-stability analysis. A generic expression for instability growth rate that unifies and expands on previous results for temporal, spatial, and spatiotemporal instabilities is obtained. It is shown that all odd-order dispersions contribute nothing to instability, whereas all even-order dispersions not only affect the conventional instability regions but may also lead to the appearance of new instability regions. The role of fourth-order dispersion in spatiotemporal instabilities is studied exemplificatively to demonstrate the generic results. Numerical simulations confirm the obtained analytic results. (C) 2002 Optical Society of America.
Resumo:
A case study of the reproductive biology of the endemic Hawaiian grouper or hapu’upu’u (Hyporthodus quernus) is presented as a model for comprehensive future studies of economically important epinephelid groupers. Specimens were collected throughout multiple years (1978–81, 1992–93, and 2005–08) from most reefs and banks of the Northwestern Hawaiian Islands. The absence of small males, presence of atretic oocytes and brown bodies in testes of mature males, and both developed ovarian and testicular tissues in the gonads of five transitional fish provided evidence of protogynous hermaphroditism. No small mature males were collected, indicating that Hawaiian grouper are monandrous (all males are sex-changed females). Complementary microscopic criteria also were used to assign reproductive stage and estimate median body sizes (L50) at female sexual maturity and at adult sex change from female to male. The L50 at maturation and at sex change was 580 ±8 (95% confidence interval [CI]) mm total length (TL) and 895 ±20 mm TL, respectively. The adult sex ratio was strongly female biased (6:1). Spawning seasonality was described by using gonadosomatic indices. Females began ripening in the fall and remained ripe through April. A February–June main spawning period that followed peak ripening was deduced from the proportion of females whose ovaries contained hydrated oocytes, postovulatory follicles, or both. Testes weights were not affected by season; average testes weight was only about 0.2% of body weight—an order of magnitude smaller than that for ovaries that peaked at 1–3% of body weight. The species’ reproductive life history is discussed in relation to its management.
Resumo:
For most fisheries applications, the shape of a length-frequency distribution is much more important than its mean length or variance. This makes it difficult to evaluate at which point a sample size is adequate. By estimating the coefficient of variation of the counts in each length class and taking a weighted mean of these, a measure of precision was obtained that takes the precision in all length classes into account. The precision estimates were closely associated with the ratio of the sample size to the number of size classes in each sample. As a rule-of-thumb, a minimum sample size of 10 times the number of length classes in the sample is suggested because the precision deteriorates rapidly for smaller sample sizes. In absence of such a rule-of-thumb, samplers have previously under-estimated the required sample size for samples with large fish, while over-sampling small fish of the same species.
Resumo:
Blacktail comber (Serranus atricauda G
Resumo:
Fish culture experiments were conducted to compare and evaluate the feeding pattern and strategies, daily ration, gastric evacuation rates, dietary breadth, similarity and overlap of silver barb, Barbodes gonionotus, and tilapia, Oreochromis sp. (natural hybrid of O. mossambicus x O. niloticus) in a rice-fish system. B. gonionotus was found to be a macrophtophagous column feeder while Oreochromis sp. was a detrivorous benthophagic browser. Ontogenic shifts in diet were clearly observed in B. gonionotus while absent in Oreochromis sp. For both species, daily food ration for the small fish was twice as large as that for the large fish. Mean rates of gastric evacuation were 0.18 h super(1) for small and 0.05 h super(1) for large B. gonionotus and 0.09 h super(1) and 0.14h super(1) for small and large Oreochromis sp., respectively. In terms of intraspecific dietary width, the smaller sized individuals of both species had a wider dietary niche than the larger conspecifics. Larger fish increased their specialization and reliance on few food items with increasing size and competitive ability. When both species were reared together, B. gonionotus showed a wider niche width than tilapia. Wider interspecific niche width of B. gonionotus compared to that of tilapia and significant interspecific dietary overlap is likely to result in suppression of the growth of tilapia in mixed culture due to: 1) a high degree of specialization and reliance of tilapia on food of low-nutrient value, and 2) slower gastric evacuation rates as compared to B. gonionotus, which would allow B. gonionotus to outgrow similar sized tilapia.
Resumo:
The ability to estimate the original size of an ingested prey item is an important step in understanding the community and population structure of piscivorous predators (Scharf et al., 1998). More specifically, knowledge of original prey size is essential for deriving important biological information, such as predator consumption rates, biomass of the prey consumed, and selectivity of a predator towards a specific size class of prey (Hansel et al., 1988; Scharf et al., 1997; Radke et al., 2000). To accurately assess the overall “top-down” pressure a predator may exert on prey community structure, prey size is crucial. However, such information is often difficult to collect in the field (Trippel and Beamish, 1987). Stomach-content analyses are the most common methods for examining the diets of piscivorous fish, but the prey items found are often thoroughly digested and sometimes unidentifiable. As a result, obtaining a direct measurement of prey items is frequently impossible.
Resumo:
Belugas, Delphinapterus leucas, groups were videotaped concurrent to observer counts during annual NMFS aerial surveys of Cook Inlet, Alaska, from 1994 to 2000. The videotapes provided permanent records of whale groups that could be examined and compared to group size estimates ade by aerial observers.Examination of the video recordings resulted in 275 counts of 79 whale groups. The McLaren formula was used to account for whales missed while they were underwater (average correction factor 2.03; SD=0.64). A correction for whales missed due to video resolution was developed by using a second, paired video camera that magnified images relative to the standard video. This analysis showed that some whales were missed either because their image size fell below the resolution of hte standard video recording or because two whales surfaced so close to each other that their images appeared to be one large whale. The correction method that resulted depended on knowing the average whale image size in the videotapes. Image sizes were measured for 2,775 whales from 275 different passes over whale groups. Corrected group sizes were calcualted as the product of the original count from video, the correction factor for whales missed underwater, and the correction factor for whales missed due to video resolution (averaged 1.17; SD=0.06). A regression formula was developed to estimate group sizes from aerial observer counts; independent variables were the aerial counts and an interaction term relative to encounter rate (whales per second during the counting of a group), which were regressed against the respective group sizes as calculated from the videotapes. Significant effects of encounter rate, either positive or negative, were found for several observers. This formula was used to estimate group size when video was not available. The estimated group sizes were used in the annual abundance estimates.