907 resultados para Apprendimento, Automatico, Tris, Scacchi, Annotazioni, Gioco
Resumo:
An electrochemically stable monolayer of tris(2,2'-bipyridyl)ruthenium(II) was obtained for the first time. It was based on the electrostatic attachment of Ru(bpy)(3)(2+) to the benzene sulfonic acid monolayer film, which was covalently bound onto glassy carbon electrode by the electrochemical reduction of diazobenzene sulfonic acid. The surface-confined Ru(bpy)(3)(2+) underwent reversible surface process, and reacted with the coreactant, tripropylamine, to produce electrochemiluminescence. In view of the stability of the electrode, the results strongly suggested that light was emitted from the surface-confined Ru(bpy)(3)(2+), not from the detached Ru(bpy)(3)(2+). The Ru(bpy)(3)(2+) modified electrode was used to the determination of tripropylamine. It showed good linearity in the concentration range from 5 muM to 1 muM with a detection limit of 1 muM (S/N = 4). The good stability of the Ru(bpy)(3)(2+) modified electrode also showed that the benzene sulfonic acid monolayer film prepared can be served as an excellent support to construct multilayers. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Self-assembly of tris-[2,2 ' -bipyridine]ruthenium(II) chloride with decatunstate produced a novel cation radical salt, [Ru(bpy)(3)](2)[W10O32] . 3DMSO. This is the first product of 2,2 ' -bipyridineruthenium(II)-polyoxometalates species. Crystal data: Monoclinic, P2(1)/c, a = 12.902(3) Angstrom, b = 21.487(3) Angstrom, c = 15.854(5) Angstrom, beta = 93.46(2)degrees, V = 4387(2) Angstrom (3), Z = 2, R-1 = 0.0599, wR2 = 0.1183. X-ray crystallographic study showed that the crystal structure was constructed by electyrostatic attraction and C-H . . .O hydrogen bonds between tris-[2,2 ' -bipyridine]ruthenium(II) and decatungstate polyanion. The tris-[2,2 ' -bipyridine]ruthenium molecules occupy cavities in the polyoxometalate lattice ordered along b-axis. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The electrochemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) [Ru(bpy)(3)(2+)] immobilized in poly(p-styrenesulfonate) (PSS)-silica-Triton X-100 composite films was investigated. The cooperative action of PSS, sol-gel and Triton X-100 attached Ru(bpy)(3)(2+) to the electrode strongly, and the presence of Triton X-100 prevented drying fractures of the sol-gel films during gelation and even on repeated wet-dry cycles. The modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and NADH in a flow injection analysis (FIA) system with a newly designed flow cell. The detection scheme exhibited good stability, short response time and high sensitivity. Detection limits were 0.1, 0.1 and 0.5 mu mol L-1 for oxalate, TPA and NADH, respectively, and the linear concentration range extended from 0.001 to 1 mmol L-1 for the three analytes. Applications of the flow cell in ECL and electrochemical detection, as well as the immobilization of reagents based on the cooperative action, are suggested.
Resumo:
Three new asymmetrical ruthenium (II) complexes: [Ru(phen)(2){phen-NHCO(CH2)(4)Br}](PF6)(2), [Ru(phen)(2){phen-NHCO(CH2)(5)Br}](PF6)(2) and [Ru(phen)(2){phen-NHCO(CH2)(10)Br}](PF6)(2) were synthesized, which were confirmed by the technique of FT-IR, H-1 NMR and ESI-MS. The electrochemical and fluorescent properties of three Ru (II) complexes were investigated with cyclic voltammetry and fluorometry.
Resumo:
Four novel screw-like Ru(II) complexes, tris(5-lauramide-1,10-phenanthroline)Ru(II) bishexafluorophosphate, tris(5-myristamide-1,10-phenanthroline)Ru(II) bishexafluorophosphate, tris(5-palmitamide-1,10-phenanthroline)Ru(II) bishexafluorophosphate and tris (5-stearamide-1,10-phenanthroline)Ru(II) bishexafluorophosphate have been efficiently synthesized. They are confirmed by the techniques of IR, H-1 NMR, H-1-H-1 COSY and ES-MS. Also, their electrochemistry, fluorescence and electrochemiluminescence are reported.
Resumo:
The effects of heteropoly acids and Triton X-100 on electrochemiluminescence (ECL) of Ru(bpy)(3)(2+) are investigated. Triton X-100 prevents the oxidation of oxalate and results in an increase of the ECL signal. H5SiW11VO40 prevents the direct oxidation of oxalate and makes the electrochemical behavior of Ru(bpy)(3)(2+) less reversible, which leads to a decrease of the ECL signal. In contrast, H3PMo12O40 has negligible effect on ECL intensity. Some possible reasons for the effects on the ECL of Ru(bpy)(3)(2+) are discussed based on the adsorption of SiW11VO405- on electrode surface and the ion association between SiW11VO405- and Ru(bpy)(3)(2+). The signal of ECL decreases linearly with the concentration of heteropoly acid in the range from 2x10-6 to 1x10(-4) mol l(-1). The results indicate that ECL of RU(bpy)(3)(2+) is a potential sensitive and selective detection method for heteropoly acids and hence for the elements comprised in them.
Resumo:
The theoretical model[17] of an ultramicroelectrode modified with a redox species film is used as the diagnostic tool to characterize the catalytic oxidation of ascorbic acid at carbon fiber ultramicrodisk electrodes coated with an Eastman-AQ-Os(bpy)(3)(2+) film. The electrocatalytic behavior of ascorbic acid at the ultramicroelectrode modified by an Eastman-AQ polymer containing tris(2,2'-bipyridine) osmium(III/II) as mediators is described. In order to determine the five characteristic currents quantitatively, the radius of the ultramicroelectrode and the concentration of ascorbic acid are varied systematically. The kinetic zone diagram has been used to study the electrocatalytic system. This system with 0.5-2.75 mM ascorbic acid belongs to SR + E case, and the concentration profiles of the catalyst in the film are given in detail. Finally, optimizing the design of catalytic system is discussed.
Resumo:
The title complex, tris[2(eta5)-tert-butylcyclopentadi-enyl]-mu-chloro-1:2kappa2Cl-tris(tetrahydrofuran-1kappaO)lithiumneodymium, [Nd(C9H13)3(mu-Cl)Li(C4H8O)3], consists of the neutral moiety ((t)BuCp)3Nd linked to the cation [Li(thf)3]+ by a mu-Cl bridge
Resumo:
(Li.3DME)[eta(5)-C5H5)3NdC6H5], 1 was synthesized by the reaction of NdCl3.2LiCl, 2 equivalents of cyclopentadienylsodium and one equivalent of phenyllithium in THF at -78-degrees-C, and crystallized from THF and DME. The crystal structure of 1 was determined by X-ray diffraction method at -80-degrees-C. The crystal of 1 is triclinic, space group P1BAR with a = 15.752(6), b = 16.232(3), c = 23.038(7) angstrom, alpha = 108.81(2), beta = 93.31(3), gamma = 108.38(2)-degrees, Z = 6 and D = 1.33 g/cm3. Least-squares refinement (5732 observed reflections) led to a final R of 0.053. The complex consists of disconnected ion pairs of (Li.3DME)+ and [(eta(5)-C5H5)3NdC6H5]-. The neodymium atom was connected to three eta(5)-bonded cyclopentadienyls and one sigma-bonded phenyl in a distorted tetrahedral arrangement with Nd-C(sigma-) 2.593(17), 2.613(13) and 2.601(13) angstrom.
Resumo:
The condensation and sulfonation of furfuryl alcohol (FA) and FA with tris (2-hydroxyethyl) isocyanurate (THEIC) and the crosslinking product structures were studied by means of solid-state C-13 NMR. The reaction of formalin with FA linear oligomer terminated by 2-methyl furan took place in the presence of the phase transfer catalyst (C4H9)4N+I-. The reaction of the terminated oligomer with a large amount of sulfuric acid as well as the former reaction was examined. The effects of some main reaction conditions on the crosslinking condensation and sulfonation were also discussed.
Resumo:
The classical method for preparation of covalently boned cellulose derivative chiral stationary phases (CSP) with diisocyanate as spacer was improved. Diisocyanate was firstly allowed to react with 3-aminopropyltriethoxysilane, and the resulting product was then applied as the spacer reagent to immobilize cellulose derivatives onto silica gel. Influences of the amount and the length of the spacer on the optical resolution ability of the CSP were investigated. Comparing improved procedure to classical diisocyanate method, the cross-linking between the glucose units of the cellulose derivatives was avoided to the most extent. With the improved procedure, regio-nonselective ways could be adopted to prepare covalently bonded CSP, which showed an advantage for the rapid preparation.
Resumo:
The synthesis of a number of new 2,2'-bipyridine ligands, functionalized with bulky ester side groups is reported (L2 - L8). Their reaction with [Ru(DMSO)4Cl2] gives rise to tris-chelate ruthenium(II) metal complexes which show an unusually high proportion of the fac-isomer, as judged by 1H NMR following conversion to the ruthenium(II) complex of 2,2'-bipyridine-5-carboxylic acid methyl ester (L1). The initial reaction appears to have thermodynamic control with the steric bulk of the ligands causing the third ligand to be labile under the reaction conditions used, giving rise to disappointing yields and allowing rearrangement to the more stable facial form. DFT studies indicate that this does not appear to be as a consequence of a metal centered electronic effect. The two isomers of [Ru(L1)3](PF6)2 were separated into the two individual forms using silica preparative plate chromatographic procedures, and the photophysical characteristics of the two forms compared. The results appear to indicate that there is no significant difference in both their room temperature electronic absorption and emission spectra or their excited state lifetimes at 77K.
Resumo:
Monomeric ruthenium(II) complexes [Ru(L)3]2+ containing unsymmetric bipyridine ligands [Where L = 5-methyl-2,2'-bipyridine (L1), 5-ethyl-2,2'-bipyridine (L2), 5-propyl-2,2'-bipyridine (L3), 5-(2-methylpropyl)-2,2'-bipyridine (L4), 5-(2,2-dimethylpropyl)-2,2'-bipyridine (L5) and 5-(carbomethoxy)-2,2'-bipyridine (L6)] have been studied and the meridional and facial isomers isolated by the use of cation-exchange column chromatography (SP Sephadex C-25) eluting with either sodium toluene-4-sulfonate or sodium hexanoate. The relative yield of the facial isomer was found to decrease with increasing steric bulk, preventing the isolation of fac-[Ru(L5)3]2+. The two isomeric forms were characterized by 1H NMR, with the complexes [Ru(L1-3)3]2+ demonstrating an unusually large coupling between the H6 and H4 protons. Crystals suitable for X-ray structural analysis of [Ru(L1)3]2+ were obtained as a mixture of the meridional and facial isomers, indicating that separation of this isomeric mixture could not be achieved by fractional crystallisation. The optical isomers of the complex [Ru(L3)3]2+ were chromatographically separated on SP Sephadex C-25 relying upon the inherent chirality of the support. It is apparent that chiral interactions can inhibit geometric isomer separation using this technique.
Resumo:
Tris-chelate 5-hydroxymethyl-2,2 '-bipyridine complexes of ruthenium (II) and the structurally related benzo- and naphthoesters have been isolated. The mer-isomer of the alcohol functionalised complex has been isolated by selective precipitation from methylene chloride and was subsequently functionalised to the benzoester with retention of the geometrical isomerism. The fac- and merisomeric forms of the ester complexes were separated using preparative plate silica chromatography and characterised by H-1 NMR spectroscopy. X-ray structural analysis of the fac-isomer of both the ester complexes confirmed the product assignment. The photophysical properties of the three isomers were investigated, indicating very similar absorption spectra to [Ru(biPY)(3)](2+). The emission wavelength was comparable in each case, with the aromatic ester complexes giving a much longer lifetime and higher quantum yields. (c) 2004 Elsevier B.V. All rights reserved.