985 resultados para Applied mathematics
Resumo:
In this work we study the existence and uniqueness of pseudo-almost periodic solutions for a first-order abstract functional differential equation with a linear part dominated by a Hille-Yosida type operator with a non-dense domain. (C) 2009 Published by Elsevier Ltd
Resumo:
This work is concerned with implicit second order abstract differential equations with nonlocal conditions. Assuming that the involved operators satisfy sonic compactness properties, we establish the existence of local mild solutions, the existence of global mild solutions and the existence of asymptotically almost periodic solutions.
Resumo:
We show the results in Chalishajar [Controllability of mixed Volterra-Fredholm-type integro-differential systems in Banach space, J. Franklin Inst. 344(1) (2007) 12-21] and Chang and Chalishajar [Controllability of mixed Volterra-Fredholm type integro-differential systems in Banach space, J. Franklin Inst., doi:10.1016/j. jfranklin.2008.02.002] are only valid for ordinary differential control systems. As a result the examples provided cannot be recovered as applications of the abstract results. (C) 2008 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this paper we study the approximate controllability of control systems with states and controls in Hilbert spaces, and described by a second-order semilinear abstract functional differential equation with infinite delay. Initially we establish a characterization for the approximate controllability of a second-order abstract linear system and, in the last section, we compare the approximate controllability of a semilinear abstract functional system with the approximate controllability of the associated linear system. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The paper considers the existence and uniqueness of almost automorphic mild solutions to some classes of first-order partial neutral functional-differential equations. Sufficient conditions for the existence and uniqueness of almost automorphic mild solutions to the above-mentioned equations are obtained. As an application, a first-order boundary value problem arising in control systems is considered. (C) 2007 Elsevier Ltd. All fights reserved.
Resumo:
We consider the two-dimensional Navier-Stokes equations with a time-delayed convective term and a forcing term which contains some hereditary features. Some results on existence and uniqueness of solutions are established. We discuss the asymptotic behaviour of solutions and we also show the exponential stability of stationary solutions.
Resumo:
By using the theory of semigroups of growth a, we discuss the existence of mild solutions for a class of abstract neutral functional differential equations. A concrete application to partial neutral functional differential equations is considered. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We discuss the existence of mild, classical and strict solutions for a class of abstract differential equations with nonlocal conditions. Our technical approach allows the study of partial differential equations with nonlocal conditions involving partial derivatives or nonlinear expressions of the solution. Some concrete applications to partial differential equations are considered. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we discuss the existence of alpha-Holder classical solutions for non-autonomous abstract partial neutral functional differential equations. An application is considered.
Resumo:
A method is presented for computing the fields produced by radio frequency probes of the type used in magnetic resonance imaging. The effects of surrounding the probe with a shielding coil, intended to eliminate stray fields produced outside the probe, are included. An essential feature of these devices is the fact that the conducting rungs of the probe are of finite width relative to the coil radius, and it is therefore necessary to find the distribution of current within the conductors as part of the solution process. This is done here using a numerical method based on the inverse finite Hilbert transform, applied iteratively to the entire structure including its shielding coils. It is observed that the fields are influenced substantially by the width of the conducting rungs of the probe, since induced eddy currents within the rungs become more pronounced as their width is increased. The shield is also shown to have a significant effect on both the primary current density and the resultant fields. Quality factors are computed for these probes and compared with values measured experimentally.
Resumo:
Numerical methods related to Krylov subspaces are widely used in large sparse numerical linear algebra. Vectors in these subspaces are manipulated via their representation onto orthonormal bases. Nowadays, on serial computers, the method of Arnoldi is considered as a reliable technique for constructing such bases. However, although easily parallelizable, this technique is not as scalable as expected for communications. In this work we examine alternative methods aimed at overcoming this drawback. Since they retrieve upon completion the same information as Arnoldi's algorithm does, they enable us to design a wide family of stable and scalable Krylov approximation methods for various parallel environments. We present timing results obtained from their implementation on two distributed-memory multiprocessor supercomputers: the Intel Paragon and the IBM Scalable POWERparallel SP2. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
In this work we show that the dengue epidemic in the city of Singapore organized itself into a scale-free network of transmission as the 2000-2005 outbreaks progressed. This scale-free network of cluster comprised geographical breeding places for the aedes mosquitoes, acting as super-spreaders nodes in a network of transmission. The geographical organization of the network was analysed by the corresponding distribution of weekly number of new cases. Therefore, our hypothesis is that the distribution of dengue cases reflects the geographical organization of a transmission network, which evolved towards a power law as the epidemic intensity progressed until 2005. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
There is a positive correlation between the intensity of use of a given antibiotic and the prevalence of resistant strains. The more you treat, more patients infected with resistant strains appears and, as a consequence, the higher the mortality due to the infection and the longer the hospitalization time. In contrast, the less you treat, the higher the mortality rates and the longer the hospitalization time of patients infected with sensitive strains that could be successfully treated. The hypothesis proposed in this paper is an attempt to solve such a conflict: there must be an optimum treatment intensity that minimizes both the additional mortality and hospitalization time due to the infection by both sensitive and resistant bacteria strains. In order to test this hypothesis we applied a simple mathematical model that allowed us to estimate the optimum proportion of patients to be treated in order to minimize the total number of deaths and hospitalization time due to the infection in a hospital setting. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
In this note, we present three independent results within generalized complex analysis (in the Colombeau sense). The first of them deals with non-removable singularities; we construct a generalized function u on an open subset Omega of C(n), which is not a holomorphic generalized function on Omega but it is a holomorphic generalized function on Omega\S, where S is a hypersurface contained in Omega. The second result shows the existence of a holomorphic generalized function with prescribed values in the zero-set of a classical holomorphic function. The last result states the existence of a compactly supported solution to the (partial derivative) over bar operator.