998 resultados para Apatite fission tracks


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sandstone petrography and mudstone mineralogy and geochemistry of Triassic mudstones and sandstones from continental redbeds of the Malaguide Complex (Betic Cordillera, southern Spain) provide useful information on provenance, palaeoclimate and geodynamics during the early stages of the Pangea break-up, and on their diagenetic evolution. The sandstones are quartzarenites to sub-litharenites, with minor lithic fragments and rare feldspars. The mudstone samples show a PAAS like elemental distribution. The samples likely record recycling processes from their metasedimentary basement rocks that significantly affected the weathering indices, and monitors cumulative effects, including a first cycle of weathering at the source rocks. Sandstone composition and chemical–mineralogical features of mudstones record a provenance derived from continental block and recycled orogen that were weathered under warm and episodically wet climate. Source areas were located towards the east of the present-day Malaguide outcrops, and were formed by fairly silicic rock types, made up mainly of Palaezoic metasedimentary rocks, similar to those of the Paleozoic underlying series, with subordinate contributions from magmatic–metamorphic sources, and a rare supply from mafic metavolcanic rocks. Clay-mineral distribution of mudstones is dominated by illite and illite/smectite mixed-layer that result from differences in provenance, weathering, and burial/temperature history. Illite crystallinity values, illitization of kaolinite, occurrence of typical authigenic minerals and apatite fission-track studies, coupled with a subsidence analysis of the whole Malaguide succession suggest burial depths of at least 4–6 km with temperatures of 140–160 °C, typical of the burial diagenetic stage, and confirm the Middle Miocene exhumation of the Betic Internal Domain tectonic stack topped by the Malaguide Complex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The geological overview map was compiled from 15 geological maps (1 : 25,000) and is based on Jacobs et al. 1996. The topographic basemaps were adapted from unpublished 1:250,000 provisional topographic maps, Institut f. Angewandte Geodäsie, Frankfurt, 1983. Part of the contour lines are from Radarsat (Liu et al. 2001).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 180, 11 sites were drilled in the vicinity of the Moresby Seamount to study processes associated with the transition from continental rifting to seafloor spreading in the Woodlark Basin. This paper presents thermochronologic (40Ar/39Ar, 238U/206Pb, and fission track) results from igneous rocks recovered during ODP Leg 180 that help constrain the latest Cretaceous to present-day tectonic development of the Woodlark Basin. Igneous rocks recovered (primarily from Sites 1109, 1114, 1117, and 1118) consist of predominantly diabase and metadiabase, with minor basalt and gabbro. Zircon ion microprobe analyses gave a 238U/206Pb age of 66.4 ± 1.5 Ma, interpreted to date crystallization of the diabase. 40Ar/39Ar plagioclase apparent ages vary considerably according to the degree to which the diabase was altered subsequent to crystallization. The least altered sample (from Site 1109) yielded a plagioclase isochron age of 58.9 ± 5.8 Ma, interpreted to represent cooling following intrusion. The most altered sample (from Site 1117) yielded an isochron age of 31.0 ± 0.9 Ma, interpreted to represent a maximum age for the timing of subsequent hydrothermal alteration. The diabase has not been thermally affected by Miocene-Pliocene rift-related events, supporting our inference that these rocks have remained at shallow and cool levels in the crust (i.e., upper plate) since they were partially reset as a result of middle Oligocene hydrothermal alteration. These results suggest that crustal extension in the vicinity of the Moresby Seamount, immediately west of the active seafloor spreading tip, is being accommodated by normal faulting within latest Cretaceous to early Paleocene oceanic crust. Felsic clasts provide additional evidence for middle Miocene and Pliocene magmatic events in the region. Two rhyolitic clasts (from Sites 1110 and 1111) gave zircon 238U/206Pb ages of 15.7 ± 0.4 Ma and provide evidence for Miocene volcanism in the region. 40Ar/39Ar total fusion ages on single grains of K-feldspar from these clasts yielded younger apparent ages of 12.5 ± 0.2 and 14.4 ± 0.6 Ma due to variable sericitization of K-feldspar phenocrysts. 238U/206Pb zircon, 40Ar/39Ar K-feldspar and biotite total fusion, and apatite fission track analysis of a microgranite clast (from Site 1108) provide evidence for the existence of a rapidly cooled 3.0 to 1.8 Ma granitic protolith. The clast may have been transported longitudinally from the west (e.g., from the D'Entrecasteaux Islands). Alternatively, it may have been derived from a more proximal, but presently unknown, source in the vicinity of the Moresby Seamount.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rate of accumulation of a ferromanganese coating on a fragment of pillow basalt was estimated using a variety of techniques. Unsupported 230 Th activity decrease in the oxide layer, K/A dating of the basalt, fission tracks dating of the glassy layer around the basalt, thickness of the palagonitization rind, and integrated 230 Th activity give ages from approximately 3 x 10-6 years to 5 x 10-3 years. Data suggest that the ferromanganese material formed rapidly (33 mm/10-6 years) and by hydrothermal or volcanic processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Topography is often thought as exclusively linked to mountain ranges formed by plates collision. It is now, however, known that apart from compression, uplift and denudation of rocks may be triggered by rifting, like it happens at elevated passive margins, and away from plate boundaries by both intra-plate stress causing reactivation of older structures, and by epeirogenic movements driven by mantle dynamics and initiating long-wavelength uplift. In the Cenozoic, central west Britain and other parts of the North Atlantic margins experienced multiple episodes of rock uplift and denudation that have been variable both at spatial and temporal scales. The origin of topography in central west Britain is enigmatic, and because of its location, it may be related to any of the processes mentioned above. In this study, three low temperature thermochronometers, the apatite fission track (AFT) and apatite and zircon (U-Th-Sm)/He (AHe and ZHe, respectively) methods were used to establish the rock cooling history from 200◦C to 30◦C. The samples were collected from the intrusive rocks in the high elevation, high relief regions of the Lake District (NW England), southern Scotland and northern Wales. AFT ages from the region are youngest (55–70 Ma) in the Lake District and increase northwards into southern Scotland and southwards in north Wales (>200 Ma). AHe and ZHe ages show no systematic pattern; the former range from 50 to 80 Ma and the latter tend to record the post-emplacement cooling of the intrusions (200–400 Ma). The complex, multi-thermochronometric inverse modelling suggests a ubiquitous, rapid Late Cretaceous/early Palaeogene cooling event that is particularly marked in Lake District and Criffell. The timing and rate of cooling in southern Scotland and in northern Wales is poorly resolved as the amount of cooling was less than 60◦C. The Lake District plutons were at >110◦C prior to the early Palaeogene; cooling due to a combined effect of high heat flow, from the heat producing granite batholith, and the blanketing effect of the overlying low conductivity Late Mesozoic limestones and mudstones. Modelling of the heat transfer suggests that this combination produced an elevated geothermal gradient within the sedimentary rocks (50–70◦C/km) that was about two times higher than at the present day. Inverse modelling of the AFT and AHe data taking the crustal structure into consideration suggests that denudation was the highest, 2.0–2.5 km, in the coastal areas of the Lake District and southern Scotland, gradually decreasing to less than 1 km in the northern Southern Uplands and northern Wales. Both the rift-related uplift and the intra-plate compression poorly correlate with the timing, location and spatial distribution of the early Palaeogene denudation. The pattern of early Palaeogene denudation correlates with the thickness of magmatic underplating, if the changes of mean topography, Late Cretaceous water depth and eroded rock density are taken into consideration. However, the uplift due to underplating alone cannot fully justify the total early Palaeogene denudation. The amount that is not ex- plained by underplating is, however, roughly spatially constant across the study area and can be referred to the transient thermal uplift induced by the mantle plume arrival. No other mechanisms are required to explain the observed pattern of denudation. The onset of denudation across the region is not uniform. Denudation started at 70–75 Ma in the central part of the Lake District whereas the coastal areas the rapid erosion appears to have initiated later (65–60 Ma). This is ~10 Ma earlier than the first vol- canic manifestation of the proto-Iceland plume and favours the hypothesis of the short period of plume incubation below the lithosphere before the volcanism. In most of the localities, the rocks had cooled to temperatures lower than 30◦C by the end of the Palaeogene, suggesting that the total Neogene denudation was, at a maximum, several hundreds of metres. Rapid cooling in the last 3 million years is resolved in some places in southern Scotland, where it could be explained by glacial erosion and post-glacial isostatic uplift.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Durango apatite was irradiated with energetic U ions of 2.64 GeV and Kr ions of 2.1 GeV, with and without simultaneous exposure to a pressure of 10.5 GPa. Analysis by confocal Raman spectroscopy gives evidence of vibrational changes being marginal for fluences below 5x10(11) ions/cm(2) but becoming dominant when increasing the fluence to 8x10(12) ions/cm(2). Samples irradiated with U ions experience severe strain resulting in crystal cracking and finally breakage at high fluences. These radiation effects are directly linked to the formation of amorphous tracks and the fraction of amorphized material increasing with fluence. Raman spectroscopy of pressurized irradiated samples shows small shifts of the band positions with decreasing pressure but without a significant change of the Gruneisen parameter. Compared to irradiations at ambient conditions, the Raman spectra of apatite irradiated at 10.5 GPa exhibit fewer modifications, suggesting a higher radiation stability of the lattice by the pressure applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two Macusanite pebbles (MB1 and MB2) were dated with the fission-track method. Six irradiations were carried out in different nuclear reactors: Pavia (Italy), IPEN-CNEN (Brazil) and IPEN-Lima (Peru). Measurements of the thorium and uranium induced-fission per target nucleus using natural thorium thin films and natural U-doped glasses calibrated against natural uranium thin films, together with lambda(F) of 8.46 x 10(-17) a(-1) were used to determine the ages. The apparent ages were corrected using the plateau and size correction methods. Track measurements were performed by different analysts, using different counting criteria. In addition, tracks were measured on samples which had been submitted to thermal treatment as well as on samples which had not been heated. Thermal treatments were carried out to erase the fossil tracks before neutron irradiation. No significant differences have been found in individual results, using the two Macusanite pebbles and the different nuclear reactors, age correction techniques, analysts, track-counting criteria, and thermal treatments before neutron irradiation. The great majority of the results (14/17) is compatible with the Ar-Ar ages of 5.12 +/- 0.11 and 5.10 +/- 0.11 Ma, Macusanite MB1 and MB2, respectively. However, the fission-track ages are systematically less (similar to8%) than the Ar-Ar ages of the two Macusanite samples studied. (C) 2003 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New analyses have been performed in order to enhance the data-set on the independent ages of four glasses that have been proposed as reference materials for fission-track dating. The results are as follows. Moldavite - repeated (40)Ar/(39)Ar age determinations on samples from deposits from Bohemia and Moravia yielded an average of 14.34 +/- 0.08 Ma. This datum agrees with other recent determinations and is significantly younger than the (40)Ar/(39)Ar age of 15.21 +/- 0.15 Ma determined in the early 1980s. Macusanite (Peru) -four K-Ar ages ranging from 5.44 +/- 0.06 to 5.72 +/- 0.12 Ma have been published previously. New (40)Ar/(39)Ar ages gave an average of 5.12 +/- 0.04 Ma. Plateau fission-track ages determined using the IRMM-540 certified glass and U and Th thin films for neutron fluence measurements agree better with these new (40)Ar/(39)Ar ages than the previously published ages. Roccastrada glass (Italy) - a new (40)Ar/(39)Ar age, 2.45 +/- 0.04 Ma, is consistent with previous determinations. The Quiron obsidian (Argentina) is a recently discovered glass that has been proposed as an additional reference material for its high spontaneous track density (around 100 000 cm(-2)). Defects that might produce spurious tracks are virtually absent. An independent (40)Ar/(39)Ar age of 8.77 +/- 0.09 Ma was determined and is recommended for this glass. We believe that these materials, which will be distributed upon request to fission-track groups, will be very useful for testing system calibrations and experimental procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology to obtain ages and thermal histories of sets of apatite samples from localities with geologically compatible characteristics is described. A methodology exploring the fact that samples with similar geological characteristics should present the same thermal history is proposed. This approach can contribute for the obtainment of more conclusive results by analysing fewer samples than it is necessary when the samples are individually analysed. In order to determine the ages, we use the absolute neutron dosimetry through thin films of natural uranium along with lambda(f) = 8.46 x 10(-17) a(-1). As an example of application of the proposed methodology, we analyse samples collected in a Brazilian region, Sao Francisco Craton, which experienced low tectonic activity. (C) 2008 Elsevier Ltd. All rights reserved.