981 resultados para Antineoplastic agents.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combretastatin-A4 (CA-4) is a natural derivative of the African willow tree Combretum caffrum. CA-4 is one of the most potent antimitotic components of natural origin, but it is, however, intrinsically unstable. A novel series of CA-4 analogs incorporating a 3,4-diaryl-2-azetidinone (β-lactam) ring were designed and synthesized with the objective to prevent cis -trans isomerization and improve the intrinsic stability without altering the biological activity of CA-4. Evaluation of selected β-lactam CA-4 analogs demonstrated potent antitubulin, antiproliferative, and antimitotic effects in human leukemia cells. A lead β-lactam analog, CA-432, displayed comparable antiproliferative activities with CA-4. CA-432 induced rapid apoptosis in HL-60 acute myeloid leukemia cells, which was accompanied by depolymerization of the microtubular network, poly(ADP-ribose) polymerase cleavage, caspase-3 activation, and Bcl-2 cleavage. A prolonged G(2)M cell cycle arrest accompanied by a sustained phosphorylation of mitotic spindle checkpoint protein, BubR1, and the antiapoptotic proteins Bcl-2 and Bcl-x(L) preceded apoptotic events in K562 chronic myeloid leukemia (CML) cells. Molecular docking studies in conjunction with comprehensive cell line data rule out CA-4 and β-lactam derivatives as P-glycoprotein substrates. Furthermore, both CA-4 and CA-432 induced significantly more apoptosis compared with imatinib mesylate in ex vivo samples from patients with CML, including those positive for the T315I mutation displaying resistance to imatinib mesylate and dasatinib. In summary, synthetic intrinsically stable analogs of CA-4 that display significant clinical potential as antileukemic agents have been designed and synthesized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Bcr-Abl kinase inhibitor, imatinib mesylate, is the front line treatment for chronic myeloid leukaemia (CML), but the emergence of imatinib resistance has led to the search for alternative drug treatments and the examination of combination therapies to overcome imatinib resistance. The pro-apoptotic PBOX compounds are a recently developed novel series of microtubule targeting agents (MTAs) that depolymerise tubulin. Recent data demonstrating enhanced MTA-induced tumour cell apoptosis upon combination with the cyclin dependent kinase (CDK)-1 inhibitor flavopiridol prompted us to examine whether this compound could similarly enhance the effect of the PBOX compounds. We thus characterised the apoptotic and cell cycle events associated with combination therapy of the PBOX compounds and flavopiridol and results showed a sequence dependent, synergistic enhancement of apoptosis in CML cells including those expressing the imatinib-resistant T315I mutant. Flavopiridol reduced the number of polyploid cells formed in response to PBOX treatment but only to a small extent, suggesting that inhibition of endoreplication was unlikely to play a major role in the mechanism by which flavopiridol synergistically enhanced PBOX-induced apoptosis. The addition of flavopiridol following PBOX-6 treatment did however result in an accelerated exit from the G2/M transition accompanied by an enhanced downregulation and deactivation of the CDK1/cyclin B1 complex and an enhanced degradation of the inhibitor of apoptosis protein (IAP) survivin. In conclusion, results from this study highlight the potential of these novel series of PBOX compounds, alone or in sequential combination with flavopiridol, as an effective therapy against CML.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Bcr-Abl kinase inhibitor, STI571, is the first line treatment for chronic myeloid leukaemia (CML), but the recent emergence of STI571 resistance has led to the examination of combination therapies. In this report, we describe how a novel non-toxic G1-arresting compound, pyrrolo-1,5-benzoxazepine (PBOX)-21, potentiates the apoptotic ability of STI571 in Bcr-Abl-positive CML cells. Co-treatment of CML cells with PBOX-21 and STI571 induced more apoptosis than either drug alone in parental (K562S and LAMA84) and STI571-resistant cells lines (K562R). This potentiation of apoptosis was specific to Bcr-Abl-positive leukaemia cells with no effect observed on Bcr-Abl-negative HL-60 acute myeloid leukaemia cells. Apoptosis induced by PBOX-21/STI571 resulted in activation of caspase-8, cleavage of PARP and Bcl-2, upregulation of the pro-apoptotic protein Bim and a downregulation of Bcr-Abl. Repression of proteins involved in Bcr-Abl transformation, the anti-apoptotic proteins Mcl-1 and Bcl-(XL) was also observed. The combined lack of an early change in mitochondrial membrane potential, release of cytochrome c and cleavage of pro-caspase-9 suggests that this pathway is not involved in the initiation of apoptosis by PBOX-21/STI571. Apoptosis was significantly reduced following pre-treatment with either the general caspase inhibitor Boc-FMK or the chymotrypsin-like serine protease inhibitor TPCK, but was completely abrogated following pre-treatment with a combination of these inhibitors. This demonstrates the important role for each of these protease families in this apoptotic pathway. In conclusion, our data highlights the potential of PBOX-21 in combination with STI571 as an effective therapy against CML.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have demonstrated previously that certain members of a series of novel pyrrolo-1,5-benzoxazepine (PBOX) compounds potently induce apoptosis in a variety of human chemotherapy-resistant cancer cell lines and in primary ex vivo material derived from cancer patients. A better understanding of the molecular mechanisms underlying the apoptotic effects of these PBOX compounds is essential to their development as antineoplastic therapeutic agents. This study sought to test the hypothesis that proapoptotic PBOX compounds target the microtubules. We show that a representative proapoptotic PBOX compound, PBOX-6, induces apoptosis in both the MCF-7 and K562 cell lines. An accumulation of cells in G2/M precedes apoptosis in response to PBOX-6. PBOX-6 induces prometaphase arrest and causes an accumulation of cyclin B1 levels and activation of cyclin B1/CDK1 kinase in a manner similar to that of two representative antimicrotubule agents, nocodazole and paclitaxel. Indirect immunofluorescence demonstrates that both PBOX-6 and another pro-apoptotic PBOX compound, PBOX-15, cause microtubule depolymerization in MCF-7 cells. They also inhibit the assembly of purified tubulin in vitro, whereas a nonapoptotic PBOX compound (PBOX-21) has no effect on either the cellular microtubule network or on the assembly of purified tubulin. This suggests that the molecular target of the pro-apoptotic PBOX compounds is tubulin. PBOX-6 does not bind to either the vinblastine or the colchicine binding site on tubulin, suggesting that it binds to an as-yet-uncharacterised novel site on tubulin. The ability of PBOX-6 to bind tubulin and cause microtubule depolymerization confirms it as a novel candidate for antineoplastic therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Overexpression of the Bcl-2 proto-oncogene in tumor cells confers resistance against chemotherapeutic drugs. In this study, we describe how the novel pyrrolo-1,5-benzoxazepine compound 7-[[dimethylcarbamoyl]oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine (PBOX-6) selectively induces apoptosis in Bcl-2-overexpressing cancer cells, whereas it shows no cytotoxic effect on normal peripheral blood mononuclear cells. PBOX-6 overcomes Bcl-2-mediated resistance to apoptosis in chronic myelogenous leukemia (CML) K562 cells by the time- and dose-dependent phosphorylation and inactivation of antiapoptotic Bcl-2 family members Bcl-2 and Bcl-XL. PBOX-6 also induces Bcl-2 phosphorylation and apoptosis in wild-type T leukemia CEM cells and cells overexpressing Bcl-2. This is in contrast to chemotherapeutic agents such as etoposide, actinomycin D, and ultraviolet irradiation, whereby overexpression of Bcl-2 confers resistance against apoptosis. In addition, PBOX-6 induces Bcl-2 phosphorylation and apoptosis in wild-type Jurkat acute lymphoblastic leukemia cells and cells overexpressing Bcl-2. However, Jurkat cells containing a Bcl-2 triple mutant, whereby the principal Bcl-2 phosphorylation sites are mutated to alanine, demonstrate resistance against Bcl-2 phosphorylation and apoptosis. PBOX-6 also induces the early and transient activation of c-Jun NH2-terminal kinase (JNK) in CEM cells. Inhibition of JNK activity prevents Bcl-2 phosphorylation and apoptosis, implicating JNK in the upstream signaling pathway leading to Bcl-2 phosphorylation. Collectively, these findings identify Bcl-2 phosphorylation and inactivation as a critical step in the apoptotic pathway induced by PBOX-6 and highlight its potential as an effective antileukemic agent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mitogen-activated protein (MAP) kinase family is activated in response to a wide variety of external stress signals such as UV irradiation, heat shock, and many chemotherapeutic drugs and leads to the induction of apoptosis. A novel series of pyrrolo-1,5-benzoxazepines have been shown to potently induce apoptosis in chronic myelogenous leukemia (CML) cells, which are resistant to many chemotherapeutic agents. In this study we have delineated part of the mechanism by which a representative compound known as PBOX-6 induces apoptosis. We have investigated whether PBOX-6 induces activation of MAP kinase signaling pathways in CML cells. Treatment of K562 cells with PBOX-6 resulted in the transient activation of two JNK isoforms, JNK1 and JNK2. In contrast, PBOX-6 did not activate the extracellular signal-regulated kinase (ERK) or p38. Apoptosis was found to occur independently of the small GTPases Ras, Rac, and Cdc42 but involved phosphorylation of the JNK substrates, c-Jun and ATF-2. Pretreatment of K562 cells with the JNK inhibitor, dicoumarol, abolished PBOX-6-induced phosphorylation of c-Jun and ATF-2 and inhibited the induced apoptosis, suggesting that JNK activation is an essential component of the apoptotic pathway induced by PBOX-6. Consistent with this finding, transfection of K562 cells with the JNK scaffold protein, JIP-1, inhibited JNK activity and apoptosis induced by PBOX-6. JIP-1 specifically scaffolds JNK, MKK7, and members of the mixed-lineage kinase (MLK) family, implicating these kinases upstream of JNK in the apoptotic pathway induced by PBOX-6 in K562 cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Expression of the transforming oncogene bcr-abl in chronic myelogenous leukemia (CML) cells is reported to confer resistance against apoptosis induced by many chemotherapeutic agents such as etoposide, ara-C, and staurosporine. In the present study some members of a series of novel pyrrolo-1,5-benzoxazepines potently induce apoptosis, as shown by cell shrinkage, chromatin condensation, DNA fragmentation, and poly(ADP-ribose) polymerase (PARP) cleavage, in three CML cell lines, K562, KYO.1, and LAMA 84. Induction of apoptosis by a representative member of this series, PBOX-6, was not accompanied by either the down-regulation of Bcr-Abl or by the attenuation of its protein tyrosine kinase activity up to 24 h after treatment, when approximately 50% of the cells had undergone apoptosis. These results suggest that down-regulation of Bcr-Abl is not part of the upstream apoptotic death program activated by PBOX-6. By characterizing the mechanism in which this novel agent executes apoptosis, this study has revealed that PBOX-6 caused activation of caspase 3-like proteases in only two of the three CML cell lines. In addition, inhibition of caspase 3-like protease activity using the inhibitor z-DEVD-fmk blocked caspase 3-like protease activity but did not prevent the induction of apoptosis, suggesting that caspase 3-like proteases are not essential in the mechanism by which PBOX-6 induces apoptosis in CML cells. In conclusion, this study demonstrates that PBOX-6 can bypass Bcr-Abl-mediated suppression of apoptosis, suggesting an important potential use of these compounds in the treatment of CML.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Malignant initiation, leukaemic transformation, and disease progression in haematological malignancies involves a series of mutational events in genes involved in normal housekeeping functions of the cell. These acquired genetic changes can lead to either increased proliferation or a decreased rate of apoptosis, thus allowing expansion of the malignant clone. Although leukaemia can arise as a de novo disease, it has become increasingly clear that therapies, including the use of irradiation and/or chemotherapy, can give rise to malignancy. Therapy-associated myelodysplasia (t-MDS) and therapy-associated acute myeloid leukaemia (t-AML) account for 10-20% of new cases of these diseases. Although these secondary malignancies have been recognised as a clinical entity for nearly 30 years, molecular studies are now pinpointing various regions of the genome that are susceptible to DNA damage by these chemotherapeutic/radiotherapeutic strategies. The detection of new malignancies (both solid tumours and haematological tumours) following allogeneic bone marrow transplantation (BMT) is also providing us with some clues to the nature of leukaemogenesis, particularly with the observation that leukaemia can occur in donor cells postallogeneic BMT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detection of pretreatment disseminated cells (pre-DTC) reflecting its homing to bone marrow (BM) in prostate cancer (PCa) might improve the current model to predict recurrence or survival in men with nonmetastatic disease despite of primary treatment. Thereby, pre-DTC may serve as an early prognostic biomarker. Post-treatment DTCs (post-DTC) finding may supply the clinician with additional predictive information about the possible course of PCa. To assess the prognostic impact of DTCs in BM aspirates sampled before initiation of primary therapy (pre-DTC) and at least 2 years after (post-DTC) to established prognostic factors and survival in patients with PCa. Available BM of 129 long-term follow-up patients with T1-3N0M0 PCa was assessed in addition to 100 BM of those in whom a pretreatment BM was sampled. Patients received either combined therapy [n = 81 (63%)], radiotherapy (RT) with different duration of hormone treatment (HT) or monotherapy with RT or HT alone [n = 48 (37%)] adapted to the criteria of the SPCG-7 trial. Mononuclear cells were deposited on slides according to the cytospin methodology and DTCs were identified by immunocytochemistry using the pancytokeratin antibodies AE1/AE3. The median age of men at diagnosis was 64.5 years (range 49.5-73.4 years). The median long-term follow-up from first BM sampling to last observation was 11 years. Categorized clinically relevant factors in PCa showed only pre-DTC status as the statistically independent parameter for survival in the multivariate analysis. Pre-DTCs homing to BM are significantly associated with clinically relevant outcome independent to the patient's treatment at diagnosis with nonmetastatic PCa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite compelling preclinical data in colorectal cancer (CRC), the efficacy of HDACIs has been disappointing in the clinic. The goal of this study was to evaluate the effectiveness of vorinostat and panobinostat in a dose- and exposure-dependent manner in order to better understand the dynamics of drug action and antitumor efficacy. In a standard 72 h drug exposure MTS assay, notable concentration-dependent antiproliferative effects were observed in the IC50 range of 1.2-2.8 μmol/L for vorinostat and 5.1-17.5 nmol/L for panobinostat. However, shorter clinically relevant exposures of 3 or 6 h failed to elicit any significant growth inhibition and in most cases a >24 h exposure to vorinostat or panobinostat was required to induce a sigmoidal dose-response. Similar results were observed in colony formation assays where ≥ 24 h of exposure was required to effectively reduce colony formation. Induction of acetyl-H3, acetyl-H4 and p21 by vorinostat were transient and rapidly reversed within 12 h of drug removal. In contrast, panobinostat-induced acetyl-H3, acetyl-H4, and p21 persisted for 48 h after an initial 3 h exposure. Treatment of HCT116 xenografts with panobinostat induced significant increases in acetyl-H3 and downregulation of thymidylate synthase after treatment. Although HDACIs exert both potent growth inhibition and cytotoxic effects when CRC cells were exposed to drug for ≥ 24 h, these cells demonstrate an inherent ability to survive HDACI concentrations and exposure times that exceed those clinically achievable. Continued efforts to develop novel HDACIs with improved pharmacokinetics/phamacodynamics, enhanced intratumoral delivery and class/isoform-specificity are needed to improve the therapeutic potential of HDACIs and HDACI-based combination regimens in solid tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Colorectal cancer is the second most common cause of cancer-related death in the United States. Recent studies showed that interleukin-8 (IL-8) and its receptors (CXCR1 and CXCR2) are significantly upregulated in both the tumor and its microenvironment, and act as key regulators of proliferation, angiogenesis, and metastasis. Our previous study showed that IL-8 overexpression in colorectal cancer cells triggers the upregulation of the CXCR2-mediated proliferative pathway. The aim of this study was to investigate whether the CXCR2 antagonist, SCH-527123, inhibits colorectal cancer proliferation and if it can sensitize colorectal cancer cells to oxaliplatin both in vitro and in vivo. SCH-527123 showed concentration-dependent antiproliferative effects in HCT116, Caco2, and their respective IL-8-overexpressing variants colorectal cancer cell lines. Moreover, SCH-527123 was able to suppress CXCR2-mediated signal transduction as shown through decreased phosphorylation of the NF-κB/mitogen-activated protein kinase (MAPK)/AKT pathway. These findings corresponded with decreased cell migration and invasion, while increased apoptosis in colorectal cancer cell lines. In vivo results verified that SCH-527123 treatment decreased tumor growth and microvessel density when compared with vehicle-treated tumors. Importantly, these preclinical studies showed that the combination of SCH-527123 and oxaliplatin resulted in a greater decrease in cell proliferation, tumor growth, apoptosis, and angiogenesis that was superior to single-agent treatment. Taken together, these findings suggest that targeting CXCR2 may block tumor proliferation, migration, invasion, and angiogenesis. In addition, CXCR2 blockade may further sensitize colorectal cancer to oxaliplatin treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To review key clinical issues underlying the assessment of in vivo efficacy when using antiangiogenic therapies for cancer treatment.

METHODS: Literature relevant to use of antiangiogenic therapies in cancer was reviewed, with particular emphasis on the assessment of in vivo efficacy of these agents, as well as additional angiogenic factors that could play a role in escape from angiogenesis inhibition.

RESULTS: In order to grow and metastasize, tumors need to continually acquire new blood supplies; therefore, therapeutic inhibition of angiogenesis has become a component of anticancer treatment for many tumor types. Bevacizumab, a humanized monoclonal antibody directed at vascular endothelial growth factor A (VEGF-A), has shown activity in combination with chemotherapy in metastatic colorectal cancer. Nevertheless, the use of antiangiogenic therapies remains suboptimal; specifically, optimal dose, duration of therapy, and combination of agents remain unknown. Also, at present, it is not possible to determine which patients are most likely to respond to a given form of antiangiogenic therapy. There has been increased recognition of alternative pathways possibly associated with disease progression in patients undergoing antiangiogenic therapy targeted at VEGF-A. Multiligand-targeted antiangiogenic therapies, such as ziv-aflibercept (formerly known as aflibercept, VEGF Trap), are currently undergoing clinical evaluation. Ziv-aflibercept forms monomeric complexes with VEGF-A, VEGF-B, and PlGF, which have a long half-life, allowing optimization of ziv-aflibercept doses and angiogenic blockage.

CONCLUSIONS: Although antiangiogenic therapies have increased treatment options for cancer patients, their use is limited by a lack of established and standardized methodology to evaluate their efficacy in vivo. Circulating endothelial cells, hypertension, and several molecular and imaging-based markers have potential for use as biomarkers in these patients and may better define appropriate patient populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Despite the significant progress made in colon cancer chemotherapy, advanced disease remains largely incurable and novel efficacious chemotherapies are urgently needed. Histone deacetylase inhibitors (HDACi) represent a novel class of agents which have demonstrated promising preclinical activity and are undergoing clinical evaluation in colon cancer. The goal of this study was to identify genes in colon cancer cells that are differentially regulated by two clinically advanced hydroxamic acid HDACi, vorinostat and LBH589 to provide rationale for novel drug combination partners and identify a core set of HDACi-regulated genes.

METHODS: HCT116 and HT29 colon cancer cells were treated with LBH589 or vorinostat and growth inhibition, acetylation status and apoptosis were analyzed in response to treatment using MTS, Western blotting and flow cytometric analyses. In addition, gene expression was analyzed using the Illumina Human-6 V2 BeadChip array and Ingenuity Pathway Analysis.

RESULTS: Treatment with either vorinostat or LBH589 rapidly induced histone acetylation, cell cycle arrest and inhibited the growth of both HCT116 and HT29 cells. Bioinformatic analysis of the microarray profiling revealed significant similarity in the genes altered in expression following treatment with the two HDACi tested within each cell line. However, analysis of genes that were altered in expression in the HCT116 and HT29 cells revealed cell-line-specific responses to HDACi treatment. In addition a core cassette of 11 genes modulated by both vorinostat and LBH589 were identified in both colon cancer cell lines analyzed.

CONCLUSION: This study identified HDACi-induced alterations in critical genes involved in nucleotide metabolism, angiogenesis, mitosis and cell survival which may represent potential intervention points for novel therapeutic combinations in colon cancer. This information will assist in the identification of novel pathways and targets that are modulated by HDACi, providing much-needed information on HDACi mechanism of action and providing rationale for novel drug combination partners. We identified a core signature of 11 genes which were modulated by both vorinostat and LBH589 in a similar manner in both cell lines. These core genes will assist in the development and validation of a common gene set which may represent a molecular signature of HDAC inhibition in colon cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As key molecules that drive progression and chemoresistance in gastrointestinal cancers, epidermal growth factor receptor (EGFR) and HER2 have become efficacious drug targets in this setting. Lapatinib is an EGFR/HER2 kinase inhibitor suppressing signaling through the RAS/RAF/MEK (MAP/ERK kinase)/MAPK (mitogen-activated protein kinase) and PI3K (phosphoinositide 3-kinase)/AKT pathways. Histone deacetylase inhibitors (HDACi) are a novel class of agents that induce cell cycle arrest and apoptosis following the acetylation of histone and nonhistone proteins modulating gene expression and disrupting HSP90 function inducing the degradation of EGFR-pathway client proteins. This study sought to evaluate the therapeutic potential of combining lapatinib with the HDACi panobinostat in colorectal cancer (CRC) cell lines with varying EGFR/HER2 expression and KRAS/BRAF/PIK3CA mutations. Lapatinib and panobinostat exerted concentration-dependent antiproliferative effects in vitro (panobinostat range 7.2-30 nmol/L; lapatinib range 7.6-25.8 μmol/L). Combined lapatinib and panobinostat treatment interacted synergistically to inhibit the proliferation and colony formation in all CRC cell lines tested. Combination treatment resulted in rapid induction of apoptosis that coincided with increased DNA double-strand breaks, caspase-8 activation, and PARP cleavage. This was paralleled by decreased signaling through both the PI3K and MAPK pathways and increased downregulation of transcriptional targets including NF-κB1, IRAK1, and CCND1. Panobinostat treatment induced downregulation of EGFR, HER2, and HER3 mRNA and protein through transcriptional and posttranslational mechanisms. In the LoVo KRAS mutant CRC xenograft model, the combination showed greater antitumor activity than either agent alone, with no apparent increase in toxicity. Our results offer preclinical rationale warranting further clinical investigation combining HDACi with EGFR and HER2-targeted therapies for CRC treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although significant progress has been made in colorectal cancer (CRC) treatment within the last decade with the approval of multiple new agents, the prognosis for patients with metastatic CRC remains poor with 5-year survival rates of approximately 8%. Resistance to chemotherapy remains a major obstacle in effective CRC treatment and many patients do not receive any clinical benefit from chemotherapy. In addition, other patients will experience adverse reactions to treatment resulting in dose modifications or treatment withdrawal, which can severely reduce treatment efficacy. Currently, significant research efforts are attempting to identify reliable and validated biomarkers with which will guide clinicians to make more informed treatment decisions. Specifically, the use of molecular profiling has the potential to assist the clinician in administering the correct drug, dose, or intervention for the patient before the onset of therapy thereby selecting a treatment strategy likely to have the greatest clinical outcome while minimizing adverse events. However, until recently, personalized medicine is a paradigm that has existed more in conceptual terms than in reality with very few validated biomarkers used routinely in metastatic CRC treatment. Rapid advances in genomic, transcriptomic and proteomic technologies continues to improve our understanding of tumor biology, but the search for reliable biomarkers has turned out to be more challenging than previously anticipated with significant disparity in published literature and limited translation into routine clinical practice. Recent progress with the identification and validation of biomarkers to the anti-epidermal growth factor receptor monoclonal antibodies including KRAS and possibly BRAF provide optimism that the goal of individualized treatment is within reach. This review will highlight and discuss current progress in the search for biomarkers, the challenges this emerging field presents, and the future role of biomarkers in advancing CRC treatment.